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Abstract. In this paper, we obtain Buchwalter-Schmets theorems in the realm of Lefschetz
linearly topologized spaces.
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1. Introduction. Throughout this paper, X stands for Hausdorff completely regu-
lar topological space, vX for its Hewitt real compactification, βX for its Čech-Stone
compactification, and C(X) for the space of continuous functions from X into the real
field R endowed with its usual topology. Let us recall that a subset B of X is bounding
if f(B) is bounded for each f ∈ C(X). X is said to be a µ-space if each bounding subset
of X is relatively compact and X is replete if X = vX. The space C(X) is denoted by
Cc(X) when we consider it endowed with the compact-open topology, and by Cs(X)
when endowed with the topology of pointwise convergence.
Nachbin [5] and Shirota [13] studied the relationship between the topological prop-

erties of X and Cc(X). They showed that X is a µ-space if and only if Cc(X) is bar-
relled and that X is replete if and only if Cc(X) is bornological. Afterwards, De Wilde-
Schmets [2] showed the latter to be true if and only if Cc(X) is ultrabornological. And
Buchwalter-Schmets [1] studied the relationship between the topological properties
of X and Cs(X) (see also [6]), obtaining:

(i) Cs(X) is barrelled if and only if each bounding subset of X is finite.
(ii) Cs(X) is bornological if and only if X is replete.
(iii) Cs(X) is ultrabornological if and only if X is replete and each compact subset

of X is finite.
On the other hand, Lefschetz introduced the linearly topologized spaces as those

Hausdorff topological vector spaces over a discrete field with a topology which is
linear (cf. [3]). In their context, we defined and studied the linearly barrelled [10],
linearly bornological [8], and linearly ultrabornological [9] spaces. With them we ob-
tained the theorems of Nachbin-Shirota and De Wilde-Schmets in the realm of lin-
early topologized spaces. In order to get them, we considered the linearly topologized
space Cλ(X), defined over the discrete field R, generated when the vector subspaces
NK = {f ∈ C(X) : K∩suppf =∅}, for each compact subset K of X, are taken to be a
base of neighborhoods of the origin in C(X). Then we were able to prove that X is a
µ-space if and only if Cλ(X) is linearly barrelled [10], and that X is replete if and only
if Cλ(X) is linearly bornological [8] or linearly ultrabornological [9].
In this paper, we also extend Buchwalter-Schmets results on Cs(X) to the setting
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of linearly topologized spaces. With this aim, we consider the linearly topologized
space Cσ(X), defined over the discrete field R, obtained by endowing C(X) with the
topology that admits, as a base of neighborhoods of the origin, the vector subspaces
NK = {f ∈ C(X) :K∩suppf =∅}, for each finite subset K of X.
Given f ∈ C(X), f∗ denotes the continuous extension of f from βX into the Alexan-

droff compactification of R. Finally, let us recall that, for each non void absolutely
convex subset H of C(X), there exists a minimum compact subset of βX, suppH,
such that if f ∈ C(X) and suppH∩suppf∗ =∅, then f ∈H, [12, II.1.3].

2. Buchwalter-Schmets theorems. A null sequence (xn) of a linearly topologized
space is said to be complete [10] if, for each sequence (αn)∈ω, the Cauchy sequence
(∑n

i=1αixi
)
is convergent. Let us recall ([10, 8, 9] respectively) that:

Definition. A linearly topologized space L is said to be :
(a) linearly barrelled if each closed linear subspace H of L that eventually contains

every complete null sequence is open.
(b) linearly bornological if each linear subspaceH of L that eventually contains every

null sequence is open.
(c) linearly ultrabornological if each linear subspace H of L that eventually contains

every complete null sequence is open.

Clearly, every linearly ultrabornological space is linearly bornological and linearly
barrelled, whilst every sequentially complete linearly bornological space is linearly
ultrabornological.
Next, we characterize the open subspaces of Cσ(X).

Lemma 1. A linear subspace L of Cσ(X) is open if and only if suppL is a finite subset
of X.

Proof. Clearly, the set M = {f ∈ C(X) : suppL∩suppf∗ = ∅} is contained in L.
So, M = {f ∈ C(X) : suppL∩ suppf = ∅} is open in Cσ(X) and, consequently, L is
open as well.
Conversely, if L is open, then there exists some finite subset K of X such that {f ∈

C(X) :K∩suppf =∅}= {f ∈ C(X) :K∩suppf∗ =∅} ⊂ L. Hence, suppL⊂K ⊂X.

From this lemma, and the fact that if A is a subset of X and L is the linear subspace
of C(X) formed by those functions vanishing on A, then suppL coincides with the
closure of A in βX, it follows that L is an open subspace of Cσ(X) if and only if A is
finite.

Lemma 2. A subset A of X is bounding if and only if the linear subspace L = {f ∈
C(X) : f(A)= {0}} is open in the strong linear topology of Cσ(X).

Proof. In order to show that L is open in the strong linear topology of Cσ(X),
it is enough to prove that each complete null sequence (fn) of Cσ(X) is eventually
contained in L, [3, §10.9(1)–(3) and §12.1(5)]. Suppose that (fn) is a complete null
sequence which is not contained in L, then there exists some a1 ∈ A and n1 ∈ N
such that fn1(a1) �= 0. So, by recurrence, for each p ∈ N, there exists some ap+1 ∈ A
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and np+1 ∈ N such that fnp+1(ai) = 0, for i < p + 1, and fnp+1(ap+1) ≠ 0 since
{a1,a2, . . . ,ap} is finite. On the other hand, {fnp : p ∈ N} being a complete null
sequence, it implies that the function g := ∑∞

p=1αp fnp ∈ C(X) for each (αn) ∈ ω.
Thus, if we select the αp in such a way that g(ap) ≥ p, we conclude that A is not
bounding. Contradiction.
Conversely, ifA is not bounding, then there is some g ∈ C(X) and a sequence (an) in

A such that |g(an)|> 1+|g(an−1)|. Let us consider a sequence (fn) in C(X) such that
fn(an)= 1 and suppfn ⊆ {x ∈X : |g(an)−g(x)|< 1/2}. Then fn ∈ C(X)\L for every
n∈N and L is not open in the strong linear topology of Cσ(X) since {suppfn :n∈N}
is locally finite and, consequently, (fn) is a complete null sequence.

The following results include Buchwalter-Schmets theorems for linearly topologized
spaces (see [7] for additional information on linear inductive limits).

Theorem 1. Let X be a Hausdorff completely regular topological space. Then Cσ(X)
is linearly barrelled if and only if each bounding subset of X is finite.

Proof. Assume that there exists a bounding subset A of X which is not finite.
Since Cσ(X) is endowed with the strong linear topology [10], by Lemma 2, the linear
subspace L = {f ∈ C(X) : f(A) = {0}} is open in Cσ(X) and Lemma 1 implies that
suppL, which coincides with the closure of A in βX, is a finite subset of X. This
contradicts the fact that A is not finite. Conversely, if each bounding subset of X
is finite, Cσ(X) coincides with Cλ(X) and X is a µ-space. Hence, Cσ(X) is linearly
barrelled [10].

Theorem 2. Let X be a Hausdorff completely regular topological space. The follow-
ing assertions are equivalent:

(i) X is replete.
(ii) Cσ(X) is a linearly bornological space.
(iii) Cσ(X) is the linear inductive limit of the family formed by its countable-dimen-

sional subspaces.
(iv) Each linear form defined on Cσ(X), that has a continuous restriction to each

countable-dimensional subspace, is continuous.

Proof. [(i)⇒(ii)] Let L be a linear subspace of Cσ(X)which contains eventually each
null sequence. By [10, Lem. 4] suppL ⊂ vX = X. If suppL were not finite, then there
would exist a sequence (an) in suppL and a sequence (Un) of pairwise disjoint open
neighborhoods in βX such that an ∈Un [11, II.11.6]. Then, for each n∈N, there exists
some fn ∈ C(X)\L whose suppf∗n ⊂Un. And from the fact that {suppfn :n∈N} are
pairwise disjoint, it follows that (fn) is a null sequence. This is not possible since
fn ∉ L for each n∈N.
Finally, [(ii)⇒(iii)] follows from [8, Prop. 1], [(iii)]⇒(iv)] is pretty obvious and the ar-

gument used in [8, Thm. 1] shows [(iv)⇒(i)].

Theorem 3. Let X be a Hausdorff completely regular topological space. The follow-
ing assertions are equivalent:

(i) X is replete and each compact subset of X is finite.
(ii) Cσ(X) is a linearly ultrabornological space.
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Proof. [(i)⇒(ii)] If each compact subset of X is finite, then Cσ(X) coincides with
Cλ(X) and since X is replete, [9] gives (ii).
[(ii)⇒(i)] is clear.
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