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Abstract. Fixed point theorems for generalized Lipschitzian semigroups are proved in p-
uniformly convex Banach spaces and in uniformly convex Banach spaces. As applications,
its corollaries are given in a Hilbert space, in Lp spaces, in Hardy space Hp , and in Sobolev
spaces Hk,p , for 1<p <∞ and k≥ 0.
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1. Introduction. Let K be a nonempty closed convex subset of a Banach space E. A
mapping T : K �→ K is said to be Lipschitzian mapping if for each n≥ 1, there exists
a positive real number kn such that

∥∥Tnx−Tny
∥∥≤ kn

∥∥x−y∥∥ (1)

for all x,y inK. A Lipschitzianmapping is said to be nonexpansive if kn = 1 for alln≥
1, uniformly k-Lipschitzian if kn = k for all n ≥ 1, and asymptotically nonexpansive
if limnkn = 1, respectively. These mappings were first studied by Geobel and Kirk
[6] and Geobel, Kirk, and Thele [8]. Lifshitz [10] showed that in a Hilbert space H,
a uniformly k-Lipschitzian mapping T with k <

√
2 has a fixed point. Downing and

Ray [3] and Ishihara and Takahashi [9] verified that Lifshitz’s theorem is valid for
uniformly Lipschitzian semigroup in Hilbert spaces.
Mizoguchi and Takahashi [14] introduced the notion of a submean on an appropriate

space and, using a submean, they proved a fixed point theorem for uniformly Lips-
chitzian semigroup in a Hilbert space. Recently, Tan and Xu [21] generalized the result
of Mizoguchi and Takahashi [14] to a Banach space setting and, also, proved a new
fixed point theorem for uniformly k-Lipschitzian semigroup in a uniformly convex
Banach space.
Now, we consider the following class of mappings, which we call generalized Lips-

chitzian mapping whose nth iterate Tn satisfies the following condition:

∥∥Tnx−Tny
∥∥≤ an

∥∥x−y∥∥+bn(∥∥x−Tnx
∥∥+∥∥y−Tny

∥∥)
+cn

(∥∥x−Tny
∥∥+∥∥y−Tnx

∥∥) (2)

for each x,y ∈K and n≥ 1, where an, bn, cn are the nonnegative constants such that
there exists an integer n0 such that bn+cn < 1 for all n≥n0.
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This class of generalized Lipschitzian mappings are more general than nonexpan-
sive, asymptotically nonexpansive, Lipschitzian, and uniformly k-Lipschitzian map-
pings and it can be seen by taking bn = cn = 0.
In this paper, we prove some fixed point theorems for generalized Lipschitzian semi-

groups in p-uniformly convex Banach spaces and in uniformly convex Banach spaces.
Next, we give its corollaries in a Hilbert space, in Lp spaces, in Hardy space Hp , and in
Sobolev spaces Hk,p , for 1<p <∞ and k≥ 0. Our results improve and extend results
from [9, 14, 21, 22].

2. Preliminaries. Let p > 1 and denote by λ the number in [0,1] and by wp(λ) the
function λ·(1−λ)p+λp ·(1−λ). The functional ‖·‖p is said to be uniformly convex
(cf. Zalinescu [24]) on the Banach space E if there exists a positive constant cp such
that, for all λ∈ [0,1] and x,y ∈ E, the following inequality holds:

‖λx+(1−λ)y‖p ≤ λ‖x‖p+(1−λ)‖y‖p−wp(λ)·cp ·‖x−y‖p. (3)

Xu [23] proved that the functional ‖ · ‖p is uniformly convex on the whole Banach
space E if and only if E is p-uniformly convex, i.e., there exists a constant cp > 0 such
that the modulus of convexity (see [7]) δE(ε)≥ cp ·εp all 0≤ ε≤ 2.
Let G be a semitopological semigroup, i.e., a semigroup with a Hausdorff topology

such that, for each a ∈ G, the mapping t �→ a · t and t �→ t ·a from G onto itself
are continuous. A semitopological semigroup G is left reversible if any two closed
right ideals of G have nonempty intersection. In this case, (G,�) is a directed system
when the binary relation “�” on G is defined by a � b if and only if {a} ∪ aG ⊇
{b} ∪ bG, where D is the closure of set D. Examples of left reversible semigroups
include commutative and all left amenable semigroups.
Let m(G) be the Banach space of bounded real valued functions on G with the

supremum norm. Suppose X is a subspace of m(G) containing constants. Following
Mizoguchi and Takahashi [14], we say that a real valued function µ on X is a submean
on X if the following conditions are satisfied:

(i) µ(f +g)≤ µ(f)+µ(g) for all f ,g ∈X;
(ii) µ(αf)=αµ(f) for all f ∈X and α≥ 0;
(iii) if f ,g ∈X with f ≤ g, then µ(f)≤ µ(g); and
(iv) µ(c)= c for every constant c.

If µ is a submean on X and f ∈ X, then we denote by either µ(f) or µt(f (t)), ac-
cording to time and circumstances, the value of µ at f . For a ∈ G and f ∈m(G), we
define (laf )(t) = f(at) and (raf)(t) = f(ta) for all t ∈ G. Let X be a subspace of
m(G) containing constants which is lG-invariant, i.e., la(X)⊆ X for all a∈G. Then a
submean µ on x is said to be left invariant if µ(f)= µ(laf ) for every a∈G and f ∈X.
A right invariant submean is defined similarly. A submean is called invariant if it is
left and right invariant. Let K be a closed convex subset of a Banach space E. Then
a collection � = {Ts : s ∈ G} of mappings of K into itself is said to be a generalized
Lipschitzian semigroup on K if the following conditions are satisfied:

(i) Tstx = TsTtx for all s,t ∈G and x ∈K;
(ii) for each x ∈K, the mapping t �→ Ttx from G into K is continuous; and
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(iii) for each s ∈G

‖Tsx−Tsy‖ ≤ as‖x−y‖+bs
(‖x−Tsx‖+‖y−Tsy‖)+cs(‖x−Tsy‖+‖y−Tsx‖),

(4)

for x,y ∈ K, where as,bs,cs > 0 such that there exists a t1 ∈ G such that bs+cs < 1
for all s � t1.
The following lemma is needed to prove the main result:

Lemma 1 [22, Lem. 2.1]. Let E be ap-uniformly convex Banach space,K a nonempty
closed convex subset of E, and {xt : t ∈ G} a bounded family of elements of E. Also,
suppose that for every x in K, the function f on G, defined by

f(t)= ‖xt−x‖p, t ∈G, (5)

belongs to X. Set

r(x)= µt‖xt−x‖p, x ∈K (6)

and

r = inf
{
r(x) : x ∈K

}
. (7)

Then there exists a unique point z in K such that

r +cp‖z−x‖p ≤ r(x) (8)

for all x in K, where cp is the constant appearing in (3).

3. Main results. Now, we prove the first result of this paper.

Theorem 1. Let K be a nonempty closed convex subset of a p-uniformly convex
Banach space E, X an lG-invariant subspace of m(G) containing constants which has
left invariant submean µ, and �= {Ts : s ∈G} a generalized Lipschitzian semigroup on
K. Suppose that there exists an x0 in K such that {Tsx0 : x ∈ G} is bounded and that,
for every u,v ∈K, the function f on G defined by

f(t)= ‖Ttu−v‖p, t ∈G, (9)

and the function g on G defined by

g(t)= 2p−1
(
αp
t +βp

t
)
, t ∈G (10)

belong to X. Then, if 2p−1{µt(αp
t +βp

t )} < 1+ cp , where αt = (at +bt + ct)/(1−bt −
ct), βt = (2bt+2ct)/(1−bt−ct), and cp is the constant appearing in (3), there exists a
z ∈K such that Tsz = z for all s ∈G.
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Proof. Since {Tsx0 : s ∈ G} is bounded, it follows that {Tsx : s ∈ G} is bounded
for every x ∈K. By Lemma 1, we inductively construct a sequence {xn}∞n=1 in K in the
following manner:

µt
∥∥Ttxn−1−xn

∥∥p =min
y∈K

µt
∥∥Ttxn−1−y

∥∥p (11)

for n= 1,2, . . . . It follows from Lemma 1 that

cp
∥∥xn−y

∥∥p ≤ µt
∥∥Ttxn−1−y

∥∥p−µt∥∥Ttxn−1−xn
∥∥p (12)

for all y ∈ K and n ≥ 1. Since T is generalized Lipschitzian, we get, after a simple
calculation,

∥∥Tsx−Tsy∥∥≤αs
∥∥x−y∥∥+βs

∥∥y−Tsy∥∥ (13)

for each x,y ∈ K and s ∈ G, where αs = (as +bs +cs)/(1−bs −cs) and βs = (2bs +
2cs)/(1−bs−cs). By putting y = Tsxn into (12), we have

cp
∥∥xn−Tsxn

∥∥p ≤ µt
∥∥Ttxn−1−Tsxn

∥∥p−µt∥∥Ttxn−1−xn
∥∥p

= µt
∥∥Tstxn−1−Tsxn

∥∥p−µt∥∥Ttxn−1−xn
∥∥p

= µt
∥∥TsTtxn−1−Tsxn

∥∥p−µt∥∥Ttxn−1−xn
∥∥p

≤ µt
[
αs
∥∥Ttxn−1−xn

∥∥+βs
∥∥xn−Tsxn

∥∥]p−µt∥∥Ttxn−1−xn
∥∥p

(14)

or

(
cp−2p−1βp

s
)∥∥xn−Tsxn

∥∥p ≤ (2p−1αp
s −1

)·µt∥∥Ttxn−1−xn
∥∥p. (15)

Therefore, we have

µs
∥∥xn−Tsxn

∥∥p ≤A·µt
∥∥Ttxn−1−xn

∥∥p, (16)

where A= (2p−1αp
s −1)/(cp−2p−1βp

s ) < 1 by the assumption of the theorem. Since

µt
∥∥Ttxn−1−xn

∥∥p ≤ µt
∥∥Ttxn−1−xn−1

∥∥p (17)

by (11), it follows from (13) that

µt
∥∥Ttxn−1−xn

∥∥p ≤A·µt
∥∥Ttxn−1−xn−1

∥∥p
≤Anµt

∥∥Ttx0−x0
∥∥p. (18)

Noticing that

∥∥xn−xn−1
∥∥p ≤ 2p−1

(∥∥xn−Ttxn−1
∥∥p+∥∥Ttxn−1−xn−1

∥∥p), (19)

we get

∥∥xn−xn−1
∥∥p ≤ 2p−1

(
µt
∥∥xn−Ttxn−1

∥∥p+µt∥∥Ttxn−1−xn−1
∥∥p)

≤ 2pµt
∥∥Ttxn−1−xn−1

∥∥p
≤ 2pAn−1µt

∥∥Ttx0−x0
∥∥p,

(20)
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which shows that {xn} is a Cauchy sequence and, hence, convergent. Let z = lim
n �→∞xn.

Then, for each s ∈G, we have
∥∥z−Tsz∥∥p ≤ (∥∥z−xn

∥∥+∥∥xn−Tsxn
∥∥+∥∥Tsxn−Tsz

∥∥)p
≤
[
(1+αs)

∥∥z−xn
∥∥+(1+βs)

∥∥xn−Tsxn
∥∥]p

≤ 2p−1
[
(1+αs)p

∥∥z−xn
∥∥+(1+βs)p ·A·µt

∥∥xn−Tsxn
∥∥p]

�→ 0 as n �→∞.

(21)

Therefore, Tsz = z for all s ∈G and the proof is complete.

Let E be a Banach space, K a nonempty closed convex subset of E, and G an un-
bounded subset of [0,∞) such that

t+h∈G for all t,h∈G (22)

and

t−h∈G for all t,h∈G with t > h (23)

(e.g., G = [0,∞) or G =N , the set of nonnegative integers). Suppose �= {Ts : s ∈G} is
a generalized uniformly Lipschitzian semigroup on K, i.e., a family of self-mappings
of K satisfying the conditions:

(i) Ts+hx = TsThx for all s,h∈G and x ∈K;
(ii) for each x ∈ K, the mappings s �→ Tsx from G onto K is continuous when G

has the relative topology of [0,∞); and
(iii)

∥∥Tsx−Tsy∥∥≤ a
∥∥x−y∥∥+b(∥∥x−Tsx∥∥+∥∥y−Tsy∥∥)+c(∥∥x−Tsy∥∥+∥∥y−Tsx∥∥)

(24)

for all x,y in K and s in G, where a,b,c are nonnegative constants such that b+c < 1.
For the rest of this paper, limt and limt always stand for limt �→∞,t∈G, limt �→∞,t∈G

respectively.
The normal structure coefficient N(E) of E is defined (cf. [2]) by

N(E)= inf
{
diamK
rK(K)

:K is a bounded convex subset of E
consisting of more than one point

}
, (25)

where diamK = sup{‖x −y‖ : x,y ∈ K} is the diameter of K and rK(K) = infx∈K
{supy∈K ‖x −y‖} is the Chebyshev radius of K relative to itself. E is said to have
uniformly normal structure if N(E) > 1. It is known that a uniformly convex Banach
space has the uniformly normal structure and for a Hilbert space H, N(H) = √2.
Recently, Pichugov [15] (cf. Prus [17]) showed that

N(Lp)=min
{
21/p,2(p−1)/p

}
, 1<p <∞. (26)

Some estimate for normal structure coefficient in other Banach spaces may be found
in [18].
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Suppose E is a uniformly convex Banach space. Then it is easily seen that the equa-
tion

ξ2δ−1E
(
1− 1

ξ

)
Ñ(E)= 1 (27)

has a unique solution ξ > 1, where Ñ(E)=N(E)−1.
Now, recall the definition of an asymptotic center. Let K be a nonempty closed con-

vex subset of a Banach space E and {xt : t ∈ G} be a bounded family of elements of
E. Then the asymptotic radius and asymptotic center of {xt}t∈G with respect to K are
the number

rK
({xt}

)= inf
y∈K

lim
t

∥∥xt−y
∥∥ (28)

and the (possibly empty) set

AK
({xt}

)= {y ∈K : lim
t

∥∥xt−y
∥∥= rK

({xt}
)}
, (29)

respectively. It is easy to see that if E is reflexive, then AK({xt}) is nonempty bounded
closed and convex and if E is uniformly convex, then AK({xt}) consists of a single
point.
We need the following lemma to prove our next theorem.

Lemma 2 [22, Lem. 3.4]. Let E be a Banach space with uniformly normal structure.
Then for every bounded family {xt}t∈G of elements of E, there exists y in co({xt : t ∈
G}) such that

lim
t

∥∥xt−y
∥∥≤ Ñ(E)A

({xt}
)
, (30)

where co(D) is the closure of the convex hull of D ⊆ E and

A
({xt}

)= lim
t

(
sup

{‖xi−xj‖ : t ≤ i, j ∈G
})

(31)

is the asymptotic diameter of {xt}.
Now, we are in position to prove our next theorem.

Theorem 2. Let E be a uniformly convex Banach space,K a nonempty closed convex
subset of E, and �= {Ts : s ∈G} a generalized uniformly Lipschitzian semigroup on K
with (α+β) < ξ, where ξ > 1 is the unique solution of (27), α = (a+b+c)/(1−b−c)
and β = (2b+2c)/(1−b−c). Suppose there is an x0 in K such that {Tsx0 : s ∈ G} is
bounded. Then there exists z in K such that Tsz = z for all s in G.

Proof. By induction, we define a sequence {xn}∞0 in K in the following manner:

xn+1 =AK

({
Ttxn

}
t∈G

)
(32)

for n= 0,1, . . . , i.e., xn+1 is the unique point in K such that

lim
t

∥∥Ttxn−xn+1
∥∥= inf

y∈K
lim
t

∥∥Ttxn−y
∥∥. (33)
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Write rn = rK({Ttxn}t∈G). Then by Lemma 2, we have

rn = lim
t

∥∥Ttxn−xn−1
∥∥

≤ Ñ(E)·A
({
Ttxn

}
t∈G

)
= Ñ(E) lim

t

(
sup

{∥∥Tixn−Tjxn
∥∥ : t ≤ i, j ∈G

})
≤ Ñ(E)(α+β)·d(xn),

(34)

that is,

rn ≤ (α+β)·Ñ(E)d(xn), (35)

where d(xn)= sup
{‖Ttxn−xn‖ : t ∈G

}
. We may assume that d(xn) > 0 for all n≥ 0.

Let n≥ 0 be fixed and let ε > 0 be small enough. First, choose j ∈G such that

∥∥Tjxn+1−xn+1
∥∥>d

(
xn+1

)−ε (36)

and then choose s0 in G so large that

∥∥Tsxn−xn+1
∥∥< rn+ε (37)

and

∥∥Tsxn−Tjxn+1
∥∥≤α

∥∥Ts−jxn−xn+1
∥∥+β∥∥Tjxn−xn

∥∥≤ (α+β)(rn+ε) (38)

for all s ≥ s0. It, then, follows that

∥∥∥Tsxn− 1
2

(
xn+1+Tjxn+1

)∥∥∥≤ (α+β)(rn+ε)
(
1−δE

(
d(xn+1)−ε

(α+β)(rn+ε)
))

(39)

for s ≥ s0 and, hence,

rn ≤ lim
s

∥∥∥Tsxn− 1
2

(
xn+1+Tjxn+1

)∥∥∥
≤ (α+β)(rn+ε)

(
1−δE

(
d(xn+1)−ε

(α+β)(rn+ε)
))

.
(40)

Taking the limit as ε �→ 0, we get

rn ≤ (α+β)·rn
(
1−δE

(
d(xn+1)
(α+β)rn

))
(41)

which together with (35) leads to the conclusion

d
(
xn+1

)≤ (α+β)2Ñ(E)δ−1E
(
1− 1

(α+β)
)
d(xn). (42)

Hence,

d(xn)≤Ad(xn−1)≤And(x0), (43)
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where A= (α+β)2Ñ(E)δ−1E
(
1−(1/(α+β)))< 1 by assumption. Noticing that∥∥xn+1−xn
∥∥≤ lim

t

∥∥Ttxn−xn+1
∥∥+ lim

t

∥∥Ttxn−xn
∥∥

≤ rn+d(xn)≤ 2d(xn),
(44)

we see from (43) that {xn} is a Cauchy sequence and, hence, strongly convergent. Let
z = limnxn. Then we have, for each s ∈G,∥∥z−Tsz∥∥≤ ∥∥z−xn

∥∥+∥∥Tsxn−xn
∥∥+∥∥Tsxn−Tsz

∥∥
≤ (1+α)∥∥z−xn

∥∥+(1+β)d(xn)

�→ 0 as n �→∞.

(45)

This completes the proof.

As a consequence of Theorem 2, we have the following result.

Corollary 1. Let K be a nonempty bounded closed convex subset of a uniformly
convex Banach space E and let T : K �→ K be a generalized uniformly Lipschitzian
mapping with (α+β) < ξ (ξ is as in Theorem 2). Then T has a fixed point.

If we take b = c = 0 in Theorem 2, then we have the following result from Theorem 2:

Corollary 2 [22, Thm. 3.5]. Let E be a uniformly convex Banach space, K a non-
empty closed convex subset of E, and �= {Ts : s ∈G} a uniformly k-Lipschitzian semi-
group on K with k < ξ, where ξ > 1 is the unique solution of (27). Suppose there is an
x0 in K such that {Tsx0 : s ∈G} is bounded. Then there exists z in K such that Tsz = z
for all s in G.

4. Some applications. Since a Hilbert space H is 2-uniformly convex and the fol-
lowing equality holds:

‖λx+(1−λ)y‖2 = λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)‖x−y‖2 (46)

for all x,y in H and λ∈ [0,1].
By Theorem 1 and (46), we immediately obtain the following:

Corollary 3. Let E be a nonempty closed convex subset of a Hilbert space H, X
be an lG-invariant subspace of m(G) containing constants which has left invariant
submean µ, and�= {Ts : s ∈G} be a generalized Lipschitzian semigroup onK. Suppose
that there exists an x0 in K such that {Tsx0 : s ∈ G} is a generalized Lipschitzian
semigroup onK. Suppose that there exists anx0 inK such that {Tsx0 : s ∈G} is bounded
and that for every u,v in K, then the function f on G defined by

f(t)= ‖Ttu−v‖2, t ∈G (47)

and the function g on G defined by

g(t)= 2
(
α2
t +β2

t
)
, t ∈G (48)

belong to X. Then, if
{
µt
(
α2
t +β2

t
)}

< 1, where αt = (at +bt + ct)/(1−bt − ct) and
βt = (2bt+2ct)/(1−bt−ct), there exists z in K such that Tsz = z for all s in G.
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If 1<p ≤ 2, then we have for all x,y in Lp and λ∈ [0,1]

‖λx+(1−λ)y‖2 ≤ λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)(p−1)‖x−y‖2 (49)

(the inequality (49) is contained in [12, 20]).
Assume that 2 < p <∞ and tp is the unique zero of the function g(x) = −xp−1+

(p−1)x+p−2 in the interval (1,∞). Let

cp = (p−1)(1+tp)2−p = 1+tp−1p(
1+tp

)p−1 . (50)

Then we have the following inequality

‖λx+(1−λ)y‖p ≤ λ‖x‖p+(1−λ)‖y‖p−wp(λ)·cp ·‖x−y‖p (51)

for all x,y in Lp and λ∈ [0,1]. (The inequality (51) is essentially due to Lim [11].)
By Theorem 1 and inequality (49) and (51), we immediately obtain the following

result.

Corollary 4. LetK be a closed convex subset of an Lp space, 1<p <∞,X be an lG-
invariant subspace ofm(G) containing constants which has a left invariant submean
µ, and � = {Ts : s ∈ G} be a generalized Lipschitzian semigroup on K. Suppose that
{Tsx0 : s ∈G} is bounded for some x0 ∈K and that for every u,v in K, the functions f
and g on G defined as in Theorem 1 belong to X. If 2µs

(
α2
s +β2

s
)
< p when 1 < p ≤ 2

and 2p−1µs
(
αp−1
s +βp−1

s
)
< 1+cp when p > 2, where αs = (as +bs +cs)/(1−bs −cs)

and βs = (2bs+2cs)/(1−bs−cs), then there exists z ∈K such that Tsz = z for all s ∈G.
Let Hp, 1<p <∞, denote the Hardy space [5] of all functions x analytic in the unit

disk |z|< 1 of the complex plane and such that

‖x‖ = lim
r �→1−

(
1
2π

∫ 2π

0

∣∣∣x(reiθ)∣∣∣p dθ
)1/p

<∞. (52)

Now, letΩ be an open subset ofRn. Denote byHk,p(Ω), k≥ 0, 1<p <∞, the Sobolev
space [1, p. 149] of distribution x such thatDαx ∈ Lp(Ω) for all |α| = a1+···+αn ≤ k
equipped with the norm

‖x‖ =

 ∑
|α|≤k

∫
Ω

∣∣Dαx(ω)
∣∣p dω



1/p

. (53)

Let (Ωα,Σα,µα), α ∈ ∧, be a sequence of positive measure spaces, where index set
∧ is finite or countable. Given a sequence of linear subspaces Xα in Lp(Ωα,Σα,µα), we
denote by Lq,p, 1 < p < ∞ and q = max{2,p} [13], the linear space of all sequences
x = {xα ∈Xα :α∈∧} equipped with the norm

‖x‖ =
(∑
α∈∧

(‖xα‖p,α
)q)1/q

, (54)
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where ‖·‖p,α denotes the norm in Lp(Ωα,Σα,µα).
Finally, let Lp = (S1,Σ1,µ1) and Lq = (S2,Σ2,µ2), where 1 < p < ∞, q = max{2,p}

and (Si,Σi,µi) are positive measure spaces. Denote by Lq(Lp) the Banach spaces [4,
III.2.10] of all measurable Lp-value function x on S2 such that

‖x‖ =
(∫

S2

(‖x(S)‖p)qµ2(ds)
)1/q

. (55)

These spaces are q-uniformly convex with q = max{2,p} [16, 19] and the norm in
these spaces satisfies

‖λx+(1−λ)y‖q ≤ λ‖x‖q+(1−λ)‖y‖q−d·wq(λ)·‖x−y‖q (56)

with a constant

d= dp =



p−1
8 for 1<p ≤ 2
1

p·2p for 2<p <∞.
(57)

Now, from Theorem 1, we have the following result.

Corollary 5. Let K be a closed convex subset of the space E, where E = Hp , or
E =Hk,p(Ω), or E = Lq,p , or E = Lq(Lp), and 1< p <∞, q =max{2,p}, k≥ 0, X be an
lG-invariant subspace ofm(G) containing constants which has a left invariant submean
µ, and � = {Ts : s ∈ G} be a generalized Lipschitzian semigroup on K. Suppose that
{Tsx0 : s ∈ G} is bounded for some x0 in K and that for every u,v in K, the functions
f and g on G defined as in Theorem 1 belong to X. If 2q−1µs

(
αq
s +βq

s
)
< 1+d, where

αs = (as +bs + cs)/(1−bs − cs) and βs = (2bs +2cs)/(1−bs − cs), then there exists
z ∈K such that Tsz = z for all s ∈G.
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