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NONWANDERING SETS OF MAPS ON THE CIRCLE
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Abstract. Let f be a continuous map of the circle S1 into itself. And let R(f),Λ(f ),Γ(f ),
and Ω(f ) denote the set of recurrent points, ω-limit points, γ-limit points, and nonwan-
dering points of f , respectively. In this paper, we show that each point of Ω(f )\R(f) is
one-side isolated, and prove that
(1) Ω(f )\Γ(f ) is countable and
(2) Λ(f )\Γ(f ) and R(f)\Γ(f ) are either empty or countably infinite.

Keywords and phrases. Nonwandering point, recurrent point, one-side isolated.

1991 Mathematics Subject Classification. 58F.

1. Introduction. Let I be the unit interval, S1 the circle, and X a topological space.
And let C0(X,X) denote the set of continuous maps from X into itself. For any
f ∈ C0(X,X), let P(f),R(f),Λ(f ),Γ(f ), and Ω(f ) denote the set of periodic points,
recurrent points,ω-limit points, γ-limit points and nonwandering points of f , respec-
tively.
For any f ∈ C0(I,I), in 1980, Z. Nitecki [6] has proved that each point of Ω(f )\P(f)

is isolated in Ω(f ) if f is piecewise monotone and is not flat on any subinterval of I.
In 1984, J. C. Xiong [7] has proved that each point ofΩ(f )\P(f) is one-side isolated in
Ω(f ), for a continuous self map of interval I. And, in 1988, J. C. Xiong [9] also showed
that Ω(f )\Γ(f ) is countable and that Λ(f )\Γ(f ) and P(f)\Γ(f ) are either empty or
countably infinite.
In this paper, we obtain the following similar results for maps of the circle:

Theorem 1.1. Let f ∈ C0(S1,S1). Then each point of Ω(f )\R(f) is one-side isolated
in Ω(f ).

Theorem 1.2. Let f ∈ C0(S1,S1). Then
(1) Ω(f )\Γ(f ) is countable.
(2) Λ(f )\Γ(f ) and R(f)\Γ(f ) are either empty or countably infinite.

2. Preliminaries and definitions. LetX be a compactmetric space and f∈C0(X,X).
For any positive integer n, we define fn inductively by f 1 = f and fn+1 = f ◦ fn.
Let f 0 denote the identity map of X. The forward orbit Orb(x) of x ∈ X is the set
{fk(x) | k= 0,1,2, . . .}. Usually, the forward orbit of x is simply called the orbit of x.
A pointx ∈X is called a periodic point of f if, for some positive integern,fn(x)= x.

The period of x is the least such integern. We denote the set of periodic points of f by
P(f). A point x ∈X is called a recurrent point of f if there exists a sequence {ni} of
positive integers with ni �→∞ such that fni(x) �→ x. We denote the set of recurrent
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points of f by R(f). A point x ∈ X is called a nonwandering point of f if, for every
neighborhood U of x, there exists a positive integerm such that fm(U)∩U ≠φ. We
denote the set of nonwandering points of f by Ω(f ).
A point y ∈ X is called an ω-limit point of x if there exists a sequence {ni} of

positive integers with ni �→∞ such that fni(x) �→ y . We denote the set of ω-limit
points ofx byω(x). DefineΛ(f )=⋃x∈X ω(x). A pointy ∈X is called anα-limit point
of x if there exists a sequence {ni} of positive integers with ni �→∞ and a sequence
{yi} of points such that fni(yi) = x and yi �→ y . The symbol α(x) denotes the set
of α-limit points of x. A point y ∈X is called a γ-limit point of x if y ∈ω(x)∩α(x).
The symbol γ(x) denotes the set of γ-limit points of x and Γ(f )=⋃x∈X γ(x).
Let R be the set of reals and Z be the set of integers. Formally, we think of the circle

S1 as R/Z and use π : R �→ R/Z to denote the canonical projection. In fact, the map π :
R �→ S1 is an example of a covering map since it wraps R around S1 without doubling
back (i.e., without critical points). To study the dynamics of the circle map, it is helpful
to use a lifting. Let f be a continuous map on the circle. We say that a continuous map
F from R into itself is a lifting of f if f ◦π = π ◦F . We use the following notations
throughout this paper.
Let a,b ∈ S1 with a≠ b, and let A∈π−1(a),B ∈π−1(b) with |A−B|< 1 and A< B.

Thenwewriteπ((A,B)),π([A,B]),π([A,B)) andπ((A,B]) to denote the open, closed,
and half-open arcs from a counterclockwise to b, respectively, and we denote it by
(a,b),[a,b],[a,b), and (a,b]. Forx,y ∈ [a,b]witha≠ b, letX ∈π−1(x),Y ∈π−1(y)
with X,Y ∈ [A,B], then we define for x,y ∈ [a,b],x > y if and only if X > Y . Let C be
a subset of a closed arc [a,b], then we define supC = π

(
sup

(
π−1(C)∩[A,B]

))
and

infC =π
(
inf
(
π−1(C)∩[A,B]

))
.

In particular, for a,b,c ∈ S1,a < b < c means that b lies in the open arc (a,c), that
is, b ∈ (a,c).
Let X be I or S1 and Y ⊂X. Let x ∈ Y . A point x ∈X is said to be left-sided isolated

(resp., right-sided isolated) in Y if, for some ε > 0, (x−ε,x)∩Y =φ (resp., (x,x+ε)∩
Y =φ). A point x is said to be one-side isolated in Y if x is either left-side or right-side
isolated in Y , and a point x which is both a right-sided and a left-sided isolated in Y
is said to be isolated in Y .
Let x ∈ S1 and f ∈ C0

(
S1,S1

)
be given. Then we use the symbols ω+(x) (resp.,

ω−(x)) to denote the set of all points y ∈ S1 such that there exists a sequence {ni}
of positive integers with ni �→ ∞ such that fni(x) �→ y and y < ··· < fni(x) <
··· < fn2(x) < fn1(x) (resp. fn1(x) < fn2(x) < ··· < fni(x) < ··· < y). It is clear
that if x ∉ P(f), then ω(x) = ω+(x)∪ω−(x). Define Λ+(f ) = ⋃x∈S1ω+(x) and
Λ−(f )=⋃x∈S1ω−(x).
Also, we use the symbols α+(x) (resp. α−(x)) to denote the set of all points y ∈ S1

such that there exists a sequence {ni} of positive integers withni �→∞ and a sequence
{xi} of points such that xi �→ y,fni(xi) = x for every i > 0 and y < ··· < xi <
··· < x2 < x1 (resp. x1 < x2 < ··· < xi < ··· < y). It is clear that if x ∉ P(f), then
α(x)=α+(x)∪α−(x).
Define γ+(x)=ω+(x)∩α+(x) and γ−(x)=ω−(x)∩α−(x). Also, we define Γ+(f )=

⋃
x∈S1 γ+(x) and Γ−(f )=⋃x∈S1 γ−(x).
Let Y be an arc in S1 and let Y denote the closure of Y as usual. A point y ∈ S1 is
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called a right-sided (resp., left-sided) accumulation point of Y if, for any z ∈ S1,(y,z)∩
Y ≠φ (resp. (z,y)∩Y ≠φ).
The right-side closure Y+ (resp. left-side closure Y−) is the union of Y and the set of

right-sided (resp. left-sided) accumulation points of Y . A point which is both a right-
sided and a left-sided accumulation point of Y is called a two-sided accumulation point
of Y .

3. Main results. The following lemmas are founded in [3].

Lemma 3.1. Let f ∈ C0
(
S1,S1

)
and x ∈Ω(f ). Then we have x ∈α(x).

Lemma 3.2. Let f ∈ C0
(
S1,S1

)
and I = [a,b] be an arc for some a,b ∈ S1 with

a≠ b, and let I∩P(f)=φ.
(a) Suppose that there exists x ∈ I such that f(x)∈ I and x < f(x). Then
(i) if y ∈ I,x < y, and f(y) ∉ [y,b], then [x,y]f -covers [f (x),b], and
(ii) if y ∈ I,y < x, and f(y) ∉ [y,b], then [y,x]f -covers [f (x),b].

(b) Suppose that there exists x ∈ I such that f(x)∈ I and x > f(x). Then
(i) if y ∈ I,x < y, and f(y) ∉ [a,y], then [x,y]f -covers [a,f (x)], and
(ii) if y ∈ I,y < x, and f(y) ∉ [a,y], then [y,x]f -covers [a,f (x)].

Lemma 3.3. Let f ∈ C0
(
S1,S1

)
. Then we have

P(f)⊂ R(f)⊂ Γ(f )⊂ R(f)⊂Λ(f )⊂Ω(f )⊂ CR(f). (1)

The following lemma is due to [5]

Lemma 3.4. Let f ∈ C0
(
S1,S1

)
, and let K ⊂ S1 with f(K)⊂ K. If x ∈Ω(f )\K, then

fn(x) ∉K◦ for any n≥ 1.
The idea of the proof of the following lemma is due to [7].

Lemma 3.5. Let f ∈ C0
(
S1,S1

)
, and let K ⊂ S1 have only finitely many connected

components and f(K)=K. Then we have K \K ⊂ P(f).

Proof. By continuity of f , we have f(K) ⊂ f(K). And by the compactness of
K,f(K)⊂ S1 is closed. Thus, f(K)⊂ f(K)= f(K). Therefore, f(K)= f(K)=K. Hence,
for each x ∈K\K, there exists x′ ∈K\K such that f(x′)= x, i.e., f(K\K)=K\K. By
the finiteness of K \K, K \K ⊂ P(f).

Proposition 3.6. Let f ∈ C0(S1,S1). Suppose that x ∈Ω(f )\R(f).
(1) If x ∈α+(x), then there exists z ∈ S1 such that f i(z,x)∩(z,x)=φ for all i≥ 1.
(2) If x ∈ α−(x), then there exists u ∈ S1 such that f i(x,u)∩ (x,u) = φ for all

i≥ 1.
Proof. We only need to prove part (1). There exists a,b ∈ S1 such that x ∈ (a,b)

and (a,b)∩Orb(x)=φ. Let V = (a,x) and let W =∪∞i=0f i(V). Then x ∈W . Since x ∈
α+(x), there exist a positive integer m and a point y ∈ (x,b) such that fm(y) = x.
By Lemma 3.2,

[x,y]fm-covers [a,x]. (2)
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We claim that x ∉W . To show this, suppose that x ∈W . Then there exist a positive
integer j and a point x0 ∈ (a,x) such that f j(x0)= x. By Lemma 3.2,

[x0,x]f j-covers [x,b]. (3)

In particular, [x0,x]f j-covers [x,y].
By (2),

[x0,x]f j-covers [x0,y]. (4)

Thus,

[x0,x]f j+m-covers itself, (5)

and, hence, f j+m has a periodic point in (a,b), a contradiction. Hence, we have x ∈
W \W .
Assume that the proposition is false, i.e., for each z ∈ (a,x), there is some i ≥ 1

such that (z,x)∩f i(z,x) ≠ φ. Note that V ⊂ f(W). Because, for each y ′ ∈ V , there
is some i ≥ 1 such that (y ′,x)∩f i(y ′,x) ≠ φ. There exists x0 ∈ (y ′,x) such that
f i(x0)∈ (y ′,x). By Lemma 3.2, either

[x0,x]f i-covers [f i(x0),b] or [x0,x]f i-covers [a,f i(x0)]. (6)

Particularly, either

[x0,x]f i-covers [x,b] or [x0,x]f j-covers [a,f i(x0)]. (7)

If

[x0,x]f i-covers [x,b], (8)

then

[x0,x]f j-covers [x,y]. (9)

By (2),

[x,y]fm-covers [x0,x]. (10)

Hence,

[x0,x]f i+m-covers itself. (11)

Thus, f j+m has a periodic point in (a,b). This is a contradiction. Therefore,

[x0,x]f j-covers
[
a,f i(x0)

]
. (12)

Thus, y ′ ∈ f i(x0,x) ⊂ f i(V) ⊂ f(W) since y ′ ∈ (a,f i(x0)). Thus, for each i =
1,2,3, . . . , l−1, f i(V)∩f l+i(V) ≠ φ, and f l+i(V)∩f 2l+i(V) ≠ φ, . . . . Therefore, Ui =
∪∞m=0fml+i(V) is connected and W = ∪l−1

i=0Ui has only finitely many connected com-
ponents. Now, by Lemma 3.5, x ∈ W \W ⊂ P(f). This is in contradiction with the
assumption of this proposition.
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The following theorem follows immediately from the proposition.

Theorem 3.7. Let f ∈ C0
(
S1,S1

)
. Then each point of Ω(f ) \R(f) is one-side iso-

lated in Ω(f ).

Corollary 3.8. Let f ∈ C0
(
S1,S1

)
. ThenΩ(f )\R(f) is countable which is nowhere

dense in S1.

The following proposition is found in [1].

Proposition 3.9. Let f ∈ C0
(
S1,S1

)
. Then we have

(1) R(f)+ \R(f)⊂Λ(f )+.
(2) R(f)− \R(f)⊂Λ(f )−.

Proposition 3.10. Let f ∈ C0
(
S1,S1

)
. Then we have R(f)+∩R(f)−\R(f)⊂ Γ(f ).

Proof. If P(f) =φ, then we have the desired results since R(f) = Γ(f ) [2]. Sup-
pose that P(f)≠φ. Let z ∈ R(f)+∩R(f)−\R(f). Then there exist a,b ∈ S1 with a< b
such that z ∈ (a,b) and (a,b)∩Orb(z) = φ. By Proposition 3.9, z ∈ Λ(f )+∩Λ(f )−.
Then there exist y1,y2 such that a < y1 < z < y2 < b with z ∈ω(y1)∩ω(y2). Since
P(f) = R(f) [4], z ∈ P(f)+ ∩P(f)− \P(f). Then there exists ui of periodic point of
f with a < y1 < u1 < u2 < ··· < z and ui �→ z. Let pi be the period of ui with re-
spect to f . Then fpi(ui) = ui for all i ≥ 1. Then either [ui,z]fpi -covers [a,ui] or
[ui,z]fpi -covers [ui,b].
We may assume that, for infinitely many i, either

[ui,z]fpi -covers [a,ui] or [ui,z]fpi -covers [ui,b]. (13)

Then we consider two cases.
Case I. [ui,z]fpi -covers [a,ui] for infinitely many i. There exists zi ∈ [ui,z] such

that fpi(zi) = y1. Since ui �→ z, zi �→ z. Thus, z ∈ α(y1) and, hence, z ∈ ω(y1)∩
α(y1)⊂ Γ(f ).

Case II. [ui,z]fpi -covers [ui,b] for infinitely many i. There exists z′i ∈ [ui,z] such
that fpi(z′i) = y1. Since ui �→ z, z′i �→ z. Thus, z ∈ α(y2) and, hence, z ∈ω(y2)∩
α(y2)⊂ Γ(f ).

The idea of the proof of the following lemma is due to [8].

Lemma 3.11. Let f ∈ C0
(
S1,S1

)
and Y ⊂ S1. Then Y \(Y +∩Y−

)
is countable.

Proof. For each y ∈ Y+\Y−, there is some uy ∈ S1 such that (uy,y)∩Y =φ. The
family of

{
(uy,y) |y ∈ Y+ \Y−

}
is countable because it is disjoint. Hence, Y+ \Y− is

countable. Similarly, Y− \Y+ is also countable. Therefore,

Y \(Y+∩Y−
)= (Y+ \Y−

)∪(Y− \Y+
)

(14)

is countable.

Theorem 3.12. Let f ∈ C0
(
S1,S1

)
. Then

(1) Ω(f )\Γ(f ) is countable.
(2) Λ(f )\Γ(f ) and R(f)\Γ(f ) are either empty or countably infinite.
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Proof. (1) We know that R(f) \ (R(f)+ ∩R(f)−
)
is countable by Lemma 3.11.

By Proposition 3.10, R(f) \ Γ(f ) is also countable. By Corollary 3.8, Ω(f ) \R(f) is
countable. Hence, Ω(f )\Γ(f ) is countable.
(2) It is easy to prove that f(ω(x))=ω(x) and f(R(f))= R(f) for x ∈ S1. Hence,

f(Λ(f )) = Λ(f ). Suppose that Λ(f ) \ Γ(f ) ≠ φ (resp., R(f) \ Γ(f ) ≠ φ). Then we
take z1 ∈ Λ(f ) \ Γ(f ) (resp., z1 ∈ R(f) \ Γ(f )). We can take z2 ∈ Λ(f ) \ Γ(f ) (resp.,
z2 ∈ R(f) \ Γ(f )) such that z1 = f(z2). Continuing this process, we can take zi ∈
Λ(f ) \ Γ(f ) (resp., zi ∈ R(f) \ Γ(f )) such that zi = f(zi+1) for all i = 1,2, . . . . Since
zi ∉ (f ) for all i ≥ 1, the points z1,z2, . . . are pairwise disjoint. Hence, Λ(f ) \ Γ(f )
(resp., R(f)\Γ(f )) is infinite and, hence, Λ(f )\Γ(f ) (resp., R(f)\Γ(f )) is countably
infinite.
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