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Abstract. In this article, we investigate the combined effects of viscosity and Ohmic elec-
trical conductivity on upward and downward propagation oblique Alfvén waves in an
isothermal atmosphere. It is shown that the presence and direction of the magnetic field
play an important role in the structure and the heating mechanism of solar atmosphere.
In addition, the atmosphere can be divided into two distinct regions connected by a tran-
sition region. In the lower region, the solution can be written as a linear combination of an
upward and a downward propagation wave with unequal wavelengths. In the upper region,
the solution decays exponentially with the altitude. Moreover, the magnetic field creates a
reflecting and a non-absorbing transition region. On the contrary, the viscosity and Ohmic
electrical conductivity produce a reflecting and an absorbing transition region. The nature
of the transition region depends on the relative strength of the viscous diffusivity with
respect to the resistive diffusivity and on the direction of the magnetic field. A unique
solution is determined. The reflection coefficient and damping factors are derived and the
conclusions are discussed in connection with the nature of the heating mechanism of the
solar atmosphere.
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1. Introduction. The propagation of atmospheric waves in an isothermal atmo-
sphere has been studied in recent years. The motivation for these studies comes from
their applications to phenomena in compressible ionized fluids such as solar, stel-
lar, and earth’s atmosphere. The presence of dissipation in an isothermal atmosphere
may cause upward travelling small amplitude waves to be reflected downward. This
type of reflection is most significant when the wavelength is large compared to the
density scale height. In addition, the dynamic of the solar atmosphere is complicated
by the fact that not only is it strongly stratified in both gas density and temperature
but it is, also, permeated by a non-uniform magnetic field. The solar atmosphere is an
example of a plasma that is both structured and stratified. Structuring because of the
powerful ordering of the magnetic field-lines that emerge through the photosphere
into concentrated flux tubes. This indicates that the direction of the magnetic field
plays an important role in the heating process of the solar atmosphere. In particu-
lar, the heating mechanism of the solar atmosphere depends mainly on the direction
and strength of the magnetic field. Thus, the presence of dissipative factors, such as
viscosity and Ohmic electrical conductivity, in an oblique magnetic field may explain
certain aspects of the heating process of the solar atmosphere.
The aim of the present work is to examine the reflection and dissipation of oblique
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Alfvén waves in a viscous and resistive isothermal atmosphere. It is shown that when
the viscosity, resistivity or the magnetic field dominates the oscillatory process, the
atmosphere can be divided into two distinct regions. These two regions are connected
by a transition region in which the reflection, dissipation of the energy and modifica-
tion of the solar waves take place. The nature of the transition region indicates that the
tunneling of the wave is very weak because of the presence of viscosity and Ohmic
electrical conductivity. There is no tunneling when the magnetic field is horizontal
and dominate the oscillatory process. The reflection, dissipation and the nature of
the transition region depend on the relative strength of the viscous diffusivity with
respect to the resistive diffusivity and on the direction of the magnetic field. As a
result, we have the following cases:
(a) when the viscosity dominates the oscillatory process, the solution that satisfies

the prescribed boundary conditions, can be written as a linear combination of an
incident and a reflected wave, in the lower region, with equal wavelength. In the upper
region the solution decays exponentially with altitude. At the same time, the transition
region acts like a reflecting and absorbing layer;
(b) when the electrical diffusivity dominates the motion, the behavior of the solution

in the upper region and in the transition region stays the same whereas, in the lower
region, the energy of the incident and reflected waves dissipates by unequal rate of
dissipation;
(c) when the magnetic field dominates the motion, the transition region acts approx-

imately as a non-absorbing but a reflecting layer. In addition, the magnitude of the
reflection coefficients tends to one as the angle between the direction of the magnetic
field and the vertical tends to zero. Thus, the presence and direction of the magnetic
field play an important role in the structure and heating process of the solar atmo-
sphere.
The problem can be reduced to the hypergeometric differential equations with three

regular singular points. Themiddle regular singular point represents the existence and
approximate location of the transition region. The reflection coefficient, dissipative
factors and wave numbers are determined and the model is investigated in connection
with the heating process of the solar atmosphere.

2. Statement of the problem. We consider the effect of the viscosity and Ohmic
electrical conductivity on the reflection and dissipation of oblique Alfvén waves, i.e.,
magnetic waves that resulted from an oblique magnetic field. The atmosphere under
consideration is assumed to be isothermal with density ρ(z) which depends only on
the altitude z and under the influence of a uniform horizontal magnetic field B(z) =
B(z)ex and an oblique magnetic field B = B(z)[sinϕ ex+cosϕ ez], where ϕ is the
angle of the magnetic field with the vertical axis z. The perturbation quantities of the
velocity and magnetic field strength are denoted by v(x, t)= v(x,z,t)ey and h(x, t)=
h(x,z,t)ey , respectively. The total magnetic field is:

H(x, t)= B[sinϕ ex+h(x,z,t)ey+cosϕez]. (2.1)

We assume that the velocity of the wave and the magnetic field perturbation are or-
thogonal to the (x,z) plane of gravity g. The equations of momentum and induction
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are:

∂v
∂t
−α2∇φh= η∇2v, (2.2)

∂h
∂t
−∇φv = κ∇2h− ∂κ

∂z
· ∂h
∂z

, (2.3)

where

∇2 = ∂2

∂x2
+ ∂2

∂z2
and ∇φ = sinϕ

∂
∂x

+cosϕ ∂
∂z

. (2.4)

The parameter η denotes the viscosity coefficient, while the parameters α2, and κ
denote Alfvén speed, and resistive diffusity, both are dependent on z and can be
written as:

α2(z)= µB2

4πρ(z)
, (2.5)

κ(z)= c2

4πσ(z)
, (2.6)

where µ is the magnetic permeability, c is the speed of light, and σ is the Ohmic
electrical conductivity. We consider the case of uniform κ and η, i.e., dκ

dz = dη
dz = 0. The

differential for the velocity v can be obtained by differentiating equation (2.2) with
respect to t and using equation (2.3):

∂2v
∂t2

−α2∇2
φv =

[(
η∇2+α2κ∇2α−2

) ∂
∂t
−α2κ∇2(α−2η)∇2

]
v. (2.7)

Since the atmosphere is steady and horizontally homogeneous, we can use Fourier
decomposition in time t and the horizontal coordinate x:

v(x,z,t)=
∞∫∫

−∞
V(z,k,ω)exp[i(kx−ωt)]dkdω, (2.8)

where V(z,k,ω) denotes the velocity perturbation spectrum of waves of frequency
ω and horizontal wave number k at altitude z. As a result, the differential equation
(2.7) can be written in the following form:

[(
α2 cos2ϕ−iω(κ+η)

)
D2+2i(kα2 sinϕ cosϕ+2ωκ(Dα/α)

)
D
]
V

+[ω2−k2α2 sin2ϕ+iωk2(κ+η)+ηωχ
(
D2α/α−3(Dα)2/α2)]V = 0, (2.9)

where D denote differentiation with respect to z.

Boundary conditions. The oscillations can be assumed to be initiated at z = 0
or lower. The exact nature of the mechanism of excitation is not considered since our
aim is to investigate the reflection and dissipation phenomenon at high altitude. At
z = 0, we assume that:

V(0,k,t)= 1, (2.10)

by suitable normalization of V(z,k,t). Physically relevant solutions must also satisfy
one of the following conditions:
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η
∫
|DV |2dz <∞, κ

∫
|DV |2dz <∞. (2.11)

The boundary conditions in (2.11) are called upper boundary conditions. They are
applicable if η 
= 0 or κ 
= 0 and are not applicable if η = κ = 0. It is seen that the
boundary conditions (2.10) and (2.11) determine a unique solution for the boundary
value problem defined by the differential equation (2.9).

3. Series and asymptotic solutions. To obtain series and asymptotic solutions of
the boundary value problem (2.9) satisfying the boundary conditions (2.10) and (2.11),
certain assumptions and simplifications are needed. The equilibrium pressure P0, den-
sity ρ0 and temperature T0 satisfy the gas law P0 = RT0ρ0 and the hydrostatic equation
P ′0+gρ0. Here R is the gas constant, g is the gravity acceleration and the prime ‘ ′ ’
denotes differentiation with respect to z. The equilibrium pressure and density can
be written as:

P0(z)= P0(0)exp
(
− z
H

)
, ρ0(z)= ρ0(0)exp

(
− z
H

)
, (3.1)

where H = RT0/g is the density scale height. As a result, we have:

α2 =α2
0 exp

(
z
H

)
, η(z)= η0 exp

(
z
H

)
, (3.2)

where α2
0 = µB2/4πρ0(0). Since considering an isothermal atmosphere, the electrical

diffusivity κ(z), which depends mainly on the temperature and rate of ionization, is
constant, i.e., κ(z) = κ0. Moreover, it is convenient to write equation (2.9) in dimen-
sionless form. To do this, we introduce the following dimensionless quantities:

z′ = z
H

, ω′ = ωH
α0

, k′ = kH, β1 = η0ω
α2
0

, β2 = χ0ω
α2
0

. (3.3)

The primes are omitted since all quantities are dimensionless from now on. The dif-
ferential equation (2.9) can be written as:

[
cos2ϕ−i[β1+β2 exp(−z)]

]
D2V +2i[kcosϕ sinϕ+β2 exp(−z)]DV

+[k2(iβ2−sin2ϕ
)+[ω2+iβ2(k2−1)]exp(−z)V

]= 0. (3.4)

Introduce a new dimensionless variable ξ defined by

ξ(z)= exp(−z)
ε

, where ε = cos2ϕ−iβ1

iβ2
, (3.5)

and let

V(z,k,ω)= ξqχ(ξ), (3.6)

where q is a parameter that determines the asymptotic behavior of the solution at
high altitude. The value of the parameter q is chosen so that the coefficient of ξ does
not depend on q. As a result, the parameter q should satisfy the relation

β3q2−β4q−β5 = 0, (3.7)
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where

β3 = cos2ϕ−iβ1, β4 = 2ikcosϕ sinϕ, β5 = k2
(
sin2ϕ−iβ1

)
. (3.8)

Consequently, the differential equation (3.4) can be written, using, (3.5), (3.6), (3.7),
and (3.8), in the following form:

ξ(1−ξ)
d2χ
dξ

+[1+2q−β4/β3−(3+2q)ξ]dχ
dξ

−[(q+1)2−k2+iω2/β2
]
χ = 0. (3.9)

The differential equation (3.9) is a special case of the hypergeometric equation

ξ(1−ξ)
d2χ
dξ

+[c−(a+b+1)ξ]dχ
dξ

−abχ = 0, (3.10)

where the parameters a,b, and c satisfy the following relations:

c = 1+q− β4

β3
, a+b = 2(1+q), ab = (q+1)2−k2+i

ω2

β2
. (3.11)

Solving for the parameters a and b, using equation (3.7), one obtains:

a=Da+iWa, b =Db−iWb. (3.12)

The damping factors Da and Db are defined by:

Da = 1− 1
s
[
k[r2 cosϕ+β1(r1+cosϕ sinϕ)]+kr3 cos2ϕ+r4β1

]
, (3.13)

Db = 1+ 1
s
[
r3 cos2ϕ+r4β1−k[r2 cos2ϕ+β1(r1+cosϕ sinϕ)]

]
. (3.14)

The parameters Wa and Wb denote wave numbers and are defined by:

Wa = 1
s
[
k(cos3ϕ sinϕ+r1 cos2ϕ+r2β1)+r4 cos2ϕ−r3β1

]
, (3.15)

Wb = 1
s
[
r4 cos2ϕ+kr2β1−r3β1−k(cos3ϕ sinϕ+r1 cos2ϕ)

]
, (3.16)

s = cos4ϕ+β1, (3.17)

where r1 and r2 are the real and imaginary parts of
√
β2
1+iβ2, r3 and r4 are the real

and imaginary parts of
√
k2−iω2/β2.

It is clear that the differential equation (3.9) has three regular singular points at
ξ = 0,ξ = 1, and ξ =∞. Also, since none of the parameters c,c−a−b, and a−b is an
integer, equation (3.9) has two linearly independent solutions in the neighborhood of
ξ = 0, i.e., |ξ|< 1, which can be written in the following form:

χ1(ξ)= F(a,b;c;ξ), (3.18)

χ2(ξ)= ξ1−cF(a−c+1,b−c+1;2−c;ξ), (3.19)

where F(a,b;c;ξ) is the hypergeometric function defined by

F(a,b;c;ξ)= Γ(c)
Γ(a)Γ(b)

∞∑
0

Γ(a+n)Γ(b+n)
Γ(c+n)

ξn

n!
. (3.20)
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By simple computations, we find that

1−c =−c1+ic2, (3.21)

c1 = k
s
[
r2 cos2ϕ+β1(r1−cosϕ sinϕ)

]
, (3.22)

c2 = k
s
[−r2 cos2ϕ+β1r2+cos2ϕ sinϕ

]
. (3.23)

It is clear that c1 > 0. Consequently, using equation (3.5), the solution χ2(ξ) increases
exponentially with the altitude z. As a result, the solution χ2(ξ) does not satisfy the
upper boundary condition because of the dissipation conduction (2.11) while the so-
lution χ1(ξ) decreases exponentially with altitude. From this, we conclude that the
solution of the differential equation (3.9) can be written in the following form:

χ(ξ)= Cχ1(ξ)= CF(a,b;c;ξ). (3.24)

The constant C is determined by the lower boundary condition (2.10).

4. Magnitude of the reflection coefficient. From equation (3.5), it is clear that
|arg(−ξ)| < π . As a result, the solution of the differential equation (3.9), given in
(3.24), for |ξ|> 1 as ε �→ 0, can be written as:

χ(ξ)= C


 Γ(c)Γ(b−a)

Γ(b)Γ(c−a) (−ξ)−aF
(
a,1−c+a;1−b+a; 1s

)
+ Γ(c)Γ(a−b)
Γ(a)Γ(c−b) (−ξ)−bF

(
b,1−c+b;1−a+b; 1s

)

 . (4.1)

Retaining the most significant terms in equation (4.1), we obtain:

χ(ξ)= C
[
Γ(c)Γ(b−a)
Γ(b)Γ(c−a)

(−ξ)−a+ Γ(c)Γ(a−b)
Γ(a)Γ(c−b)

(−ξ)−b
]
. (4.2)

Reintroducing the dimensionless variable z via equation (3.5), equation (4.2) becomes

χ(z)= CA
[
exp(Da+iWa)z+Rc exp(Db−iWb)z

]
, (4.3)

where

A= Γ(c)Γ(b−a)
Γ(b)Γ(c−a)

exp
[
(Da+iWa)(log ε+iθε)

]
, (4.4)

and θε = arg(ε). The reflection coefficient Rc is defined by:

Rc = Γ(b)Γ(a−b)Γ(c−a)
Γ(a)Γ(b−a)Γ(c−b)

exp
[
(a−b)(logε+iθε)

]
. (4.5)

The constant C is determined from equation (4.4) using the boundary condition (2.10).
As a result, we have:

C = 1
A(1+Rc)

. (4.6)

Consequently, the solution of the differential equation (3.9), below the reflecting layer,
which satisfies the prescribed boundary conditions can be written in the following
form:

χ(z)∼ 1
(1+Rc)

[
exp(Da+iWa)z+Rc exp(Db−iWb)z

]
. (4.7)
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5. Conclusions and general remarks. It is clear that the parameters Da,Db,Wa,
and Wb depend on the viscosity, resistivity, and ϕ. Thus, the study of the reflection
and dissipation of the solar waves and any comparison among the effects of these
parameters depends on the relative strength of the viscous and resistive diffusivities
and the direction of the magnetic field. As a result, we have the following conclusions:
[I] Equation (4.7) represents the behavior of the solution of the differential equation

(3.9), that satisfies the prescribed boundary conditions, below the reflecting layer and
indicates that the solution can be written as a linear combination of an upward and
a downward propagating wave. It is clear that Da 
= Db and Wa 
= Wb. This indicates
that the wavelength of incident wave does not equal the wavelength of the reflected
wave, which shows that the resonance cannot take place. In addition, the rate at which
the energy of the incident wave dissipates is different from that of the reflected one.
This shows that the dissipation of the energy of the wave takes place not only in the
transition layer but also below the reflecting layer as the waves propagate upward and
downward. Above the reflecting layer, the solution decays exponentially with altitude.
The dissipated energy, above, below, and in the reflecting layer, contributes to the
heating of the solar atmosphere.
[II] The regions, below and above the reflecting layer, are connected by a transition

region which is located in the vicinity of |ε|ez �→ 1. In the transition region, the wave
modification and most of its energy dissipation take place. The nature of dissipation
in the transition region depends on the ratios of viscous and resistive diffusivities and
on the direction of the magnetic field. The presence of the transition region is essen-
tial not only for the dissipation of the energy of the wave but also for the reflection
process. The transition region behaves as follows:
(a) when the effect of the viscosity and resistivity is negligible compared to that of

the magnetic field, the transition region acts like a reflecting and non-absorbing layer;
(b) when either the effect of the viscosity or that of the resistivity is large compared

to that of the magnetic field, the transition layer acts as an absorbing and a reflecting
layer.
[III] One of the simplest models of electrical conduction in ionized gases considers

only the current due to electrons, i.e., we neglect the motion of positive ions and
neutrals because they are heavier and slower in their motion. As a result, the electrical
current and inertia forces are:

J=NeV, eE=m
dV
dτ

, (5.1)

where N is the unit volume, e is the electron charge, E is the electric field, and τ is
the mean time between colission charges inversely with the electron density if the
atmosphere is fully ionized. If the rate of ionization is constant, the Ohmic electrical
conductivity is approximately independent of the mass density. As a result, the Ohmic
electrical conductivity is constant in an isothermal atmosphere. Consequently, the
dissipation in only viscous atmosphere takes place mainly in the transition region. In
only a resistive atmosphere, the energy of the wave dissipates as it propagates below
the reflecting layer and in the transition region. This leads to intense heating process
in the solar atmosphere.
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[IV] The argument in [III] justifies the necessity of the dissipation condition. More-
over, the combined effect of the viscosity and resistivity explains the way in which the
heating process of the solar atmosphere takes place and the difference in the amount
of heat in different regions with the same magnetic field. In addition, since the reflec-
tion coefficient and the approximate location of the transition region depend on the
ratio of the viscosity with respect to the resistivity and the angle of the inclination of
themagnetic field, the direction of themagnetic field influences the propagation of the
waves in all regions and even if κ = η= 0, the magnitude of the reflection coefficient is
not always equal to one. This is due to the direction in which the wave travels. For an
oblique magnetic field, as it tilts closer to the horizontal, the altitude of the transition
region increases until it recedes to infinity for a horizontal field. In this case, the lower
region fills the whole atmosphere. This can be explained by the fact that the lack of
a vertical component of the external magnetic field does not favor either upward or
downward propagation and favors the dissipation along the horizontal direction.
[V] It is clear that the differential equation (3.9) has three regular singular points.

They are ξ = ξ1 = 0, ξ = ξ2 = 1, and ξ = ξ3 =∞. The middle regular singular point rep-
resents the approximate location of the transition region. As ξ2 �→ ξ3, the transition
region recedes to infinity, but the case of η �→ κ �→ 0 will not be recovered because
no matter how small the diffusivities and the Alfvén speed are, they create a reflecting
and dissipating layer and we have a solution that can be written as a linear combina-
tion of an upward and downward propagating wave. As the transition region recedes
to infinity, the two regular singular points ξ2, and ξ3 coincide which leads to an irreg-
ular singular point, whereas the singularity ξ1 = 0 of the equation remains regular. As
a result, the solution of the differential equation (3.9) is given in the following cases:
(a) In the case of a non-horizontal magnetic field, which is the subject of this paper,

the solution can be expressed in terms of the hypergeometric functions, with three
regular singular points. The intermediate singular point specifies the existence and lo-
cation of the transition region where the motion of the waves is dominated by viscous
and resistive dissipation;
(b) In the case of the horizontal magnetic field, the solution can be expressed in

terms of a confluent hypergeometric functionwith a regular singular point at ξ = 1 and
irregular one at ξ = ξ2 = ξ3 =∞. As a result, we have one region, in which the solution
can bewritten as a linear combination of an upward and a downward propagatingwave
which is dominated by dissipation. Also, in this case, the solution may be expressed
in terms of Bessel Functions.
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