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ON 2-ORTHOGONAL POLYNOMIALS OF LAGUERRE TYPE
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Abstract. Let {Pn}n≥0 be a sequence of 2-orthogonal monic polynomials relative to linear
functionalsω0 andω1 (see Definition 1.1). Now, let {Qn}n≥0 be the sequence of polynomi-
als defined by Qn := (n+1)−1P ′n+1, n≥ 0. When {Qn}n≥0 is, also, 2-orthogonal, {Pn}n≥0
is called “classical” (in the sense of having the Hahn property). In this case, both {Pn}n≥0
and {Qn}n≥0 satisfy a third-order recurrence relation (see below). Working on the recur-
rence coefficients, under certain assumptions and well-chosen parameters, a classical fam-
ily of 2-orthogonal polynomials is presented. Their recurrence coefficients are explicitly
determined. A generating function, a third-order differential equation, and a differential-
recurrence relation satisfied by these polynomials are obtained. We, also, give integral
representations of the two corresponding linear functionals ω0 and ω1 and obtain their
weight functions which satisfy a second-order differential equation. From all these prop-
erties, we show that the resulting polynomials are an extention of the classical Laguerre’s
polynomials and establish a connection between the two kinds of polynomials.

Keywords and phrases. Orthogonal polynomials, d-orthogonal polynomials, Laguerre
polynomials, Sheffer polynomials, recurrence relations, integral representations.
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1. Introduction. It is well known (see, e.g., [4]) that the generalized Laguerre poly-
nomials

{
L(α)n

}
n≥0, for α > −1, are orthogonal with respect to the weight function

�(x)= xαe−x on the interval 0≤ x <+∞, that is,
∫ +∞
0

L(α)m (x)L(α)n (x)xαe−xdx = Γ(n+α+1)
n!

δm,n, m,n≥ 0. (1.1)

They are defined by the generating function

(1−t)−α−1e−xt/(1−t) =
∞∑
n=0

L(α)n (x)tn. (1.2)

Their corresponding monic polynomials
{
L̂(α)n

}
n≥0 are defined by L̂

(α)
n = (−1)nn! L(α)n ,

n≥ 0 and satisfy the second-order recurrence relation

L̂(α)n+2(x)=
(
x−(2n+α+3))L̂(α)n+1(x)−(n+1)(n+α+1)L̂(α)n (x), n≥ 0,

L̂(α)0 (x)= 1, (1.3)

L̂(α)1 (x)= x−(α+1),
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as well as the following relations:

d
dx

L̂(α)n+1(x)= (n+1)L̂(α+1)n (x), n≥ 0, (1.4)

L̂(α)n+1(x)= L̂(α+1)n+1 (x)+(n+1)L̂(α+1)n (x), n≥ 0, (1.5)

xL̂(α+1)n (x)= L̂(α)n+1(x)+(n+α+1)L̂(α)n (x), n≥ 0. (1.6)

Recently, within the framework of the d-orthogonality of polynomials or polynomi-
als of simultaneous orthogonality studied in [12, 11, 16] which does not really have the
same orthogonality relations but are considered to be orthogonal relative to positive
measures, new kinds of d-orthogonal polynomials have been the subject of various
investigations [1, 3, 5, 9, 15]. In particular, those having some properties that are
analogous to the classical orthogonal polynomials.
In this paper, when d= 2, under special conditions and well-chosen parameters, we

give a family of 2-orthogonal “classical” polynomials which are a natural extension
of the classical Laguerre polynomials. These polynomials have some properties anal-
ogous to those satisfied by the classical Laguerre polynomials. Their recurrence co-
efficients and generating function are explicitly determined, a differential-recurrence
relation and a third-order differential equation are obtained. We denote these polyno-
mials by Pn(·;α), where α is an arbitrary parameter. They are called the 2-orthogonal
polynomials of Laguerre type related to the two linear functionals ω0,ω1, where ω0

satisfies a second-order differential (distributional) equation andω1 is given in terms
ofω0 andω′

0 (see equations (4.13), (4.14)). Finally, one of the problems is to determine
integral representations of both functionalsω0 andω1. Indeed, applying the method
explained in [8], if we denote by �0 (resp., �1) the weight function representing the
functionalω0 (resp.,ω1), we obtain that when α>−1,�0(x)= e−1�(x)I∗α(x) on the
interval 0≤ x <+∞, with �(x)= xαe−x being the weight function related to the classi-
cal Laguerre polynomials, and I∗α an entire function defined by I∗α(x)= x−α/2Iα(2

√
x),

where Iα is the modified Bessel function of the first kind.
Let us now recall some results which we need below. Let {Pn}n≥0 be a sequence

of monic polynomials and {ωn}n≥0 be its dual sequence defined by 〈ωm,Pn〉 = δm,n,
m,n≥ 0, where 〈 ,〉 is the duality brackets between� (the vector space of polynomials
with coefficients in C) and its dual �′.

Lemma 1.1 [14]. For any linear functional u and integer p ≥ 1, the following two
statements are equivalent:
(i) 〈u,Pp−1〉 �= 0;〈u,Pn〉 = 0, n≥ p;
(ii) ∃ λν ∈ C, 0≤ ν ≤ p−1, λp−1 �= 0 such that u=∑p−1

ν=0λνuν.

Definition 1.1. The sequence {Pn}n≥0 is said to be d-orthogonal polynomials
sequence (d-OPS) with respect to the d-dimensional functional Ω = t(ω0, . . . ,ωd−1) if
it fulfills [14, 17] 〈

ων,PmPn
〉= 0, n≥md+ν+1,〈

ων,PmPmd+ν
〉 �= 0, (1.7)

for each integer ν with ν = 0,1, . . . ,d−1 andm≥ 0.
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Remark 1.1.

(a) When d= 1, we meet again the ordinary orthogonality.
(b) The linear functionals ων are not necessarily positive definite and the d-dimen-

sional functional Ω is not unique. Indeed, according to Lemma 1.1, if {Pn}n≥0 is d-
orthogonal relative to the functional �= t(u1, . . . ,ud), we have

uκ =
κ−1∑
ν=0

λκνων, λκκ−1 �= 0, 1≤ κ ≤ d

⇐⇒ων =
ν+1∑
k=1

τνkuk, τνν+1 �= 0,0≤ ν ≤ d−1. (1.8)

Thus, this notion of d-orthogonality for polynomials, defined and studied in a differ-
ent context in [17], appears as a particular case of the general notion of biorthogonal-
ity described in [2]. A remarkable characterization of the d-orthogonal polynomials
is that they satisfy a standard (d+ 1)-order recurrence relation, that is, a relation
between d+2 consecutive polynomials [17]. Here, we work only with the canonical
d-dimensional functional Ω = t(ω0, . . . ,ωd−1) and in all the sequel we only consider
the case d= 2, that is, {Pn}n≥0 is 2-OPS with respect to the linear functionalsω0 and
ω1. In this case, the orthogonality relations are

〈ω0,PmPn〉 = 0, n≥ 2m+1;
〈ω0,PmP2m〉 �= 0, m≥ 0 (1.9)

and

〈ω1,PmPn〉 = 0, n≥ 2m+2;
〈ω1,PmP2m+1〉 �= 0, m≥ 0. (1.10)

Then {Pn}n≥0 satisfies a third-order recurrence relation [14, 17] which we write in the
form

Pn+3(x)= (x−βn+2)Pn+2(x)−αn+2Pn+1(x)−γn+1Pn(x), n≥ 0,
P0(x)= 1, P1(x)= x−β0, P2(x)= (x−β1)P1(x)−α1,
γn+1 �= 0, n≥ 0 (regularity conditions).

(1.11)

Let us now introduce the sequence ofmonic polynomials {Qn := (n+1)−1P ′n+1}n≥0. We
denote by {ω̃n}n≥0 the dual sequence of {Qn}n≥0. According to the Hahn’s property
[10], if the sequence {Qn}n≥0 is also 2-orthogonal, then {Pn}n≥0 is called a “classical” 2-
OPS. In this case, the sequence {Qn}n≥0, too, satisfies a third-order recurrence relation

Qn+3(x)=
(
x− β̃n+2

)
Qn+2(x)−α̃n+2Qn+1(x)− γ̃n+1Qn(x), n≥ 0,

Q0(x)= 1, Q1(x)= x− β̃0, Q2(x)=
(
x− β̃1

)
Q1(x)−α̃1,

γ̃n+1 �= 0, n > 0.

(1.12)

By differentiating (1.11) and using (1.12), we easily obtain

Pn+3(x)=Qn+3(x)+(n+3)
(
βn+3− β̃n+2

)
Qn+2(x)

+((n+2)αn+3−(n+3)α̃n+2
)
Qn+1(x)

+((n+1)γn+2−(n+3)γ̃n+1)Qn(x), n≥ 0,
(1.13)
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with the initial conditions

P0(x)=Q0(x)= 1,
P1(x)=Q1(x)+β1− β̃0,
P2(x)=Q2(x)+2

(
β2− β̃1

)
Q1(x)+(α2−α̃1).

(1.14)

Otherwise, when the 2-OPS {Pn}n≥0 is “classical”, it was obtained in [6] that the recur-
rence coefficients {βn}, {β̃n},{γνn}, and {γ̃νn}(ν = 0,1) satisfy the following non-linear
system which is valid for n≥ 1 :

(n+2)β̃n−nβ̃n−1 = (n+1)βn+1−(n−1)βn; (1.15)

2β̃0 = β0+β1, (1.16)

(n+3)α̃n+1−(n+1)α̃n = (n+1)αn+2−(n−1)αn+1

+(n+1)(βn+1− β̃n)2; (1.17)

3α̃1 =α2+α1+(β1− β̃0)2, (1.18)

(n+4)γ̃n+1−(n+2)γ̃n = (n+1)γn+2−(n−1)γn+1
+(n+1)αn+2

(
βn+2+βn+1−2β̃n

)
(1.19)

−(n+2)α̃n+1
(
2βn+2− β̃n+1− β̃n

)
;

4γ̃1 = γ2+γ1+α2(β2+β1−2β̃0)
−2α̃1(2β2− β̃1− β̃0), (1.20)

nαn+1αn+2+(n+2)α̃nα̃n+1−2(n+1)α̃nαn+2

= (n+2)γ̃n
(
2βn+2− β̃n+1− β̃n−1

)
(1.21)

−nγn+1
(
βn+2+βn−2β̃n−1

)
;

nαn+1γn+2+nγn+1αn+3 = γ̃n
(
2(n+2)αn+3−(n+3)α̃n+2

)
+α̃n

(
2(n+1)γn+2−(n+3)γ̃n+1

)
, (1.22)

nγn+1γn+3 = γ̃n
(
2(n+2)γn+3−(n+4)γ̃n+2

)
. (1.23)

To solve this system, we pose

β̃n = βn+1+δn, n≥ 0, (1.24)

α̃n =αn+1
n

n+1ρn, n≥ 1 (ρn �= 0), (1.25)

γ̃n = γn+1
n

n+2θn, n≥ 1 (θn �= 0). (1.26)

In its full generality, the above systemhas remained unsolved. However, if we impose
symmetry [6] or are interested in particular conditions [5, 9, 15, 8], some solutions
have been obtained. For instance, under the assumption (δn = 0,n ≥ 0,then βn =
β̃n = const.), the system was solved in [6] and a class of “classical” 2-orthogonal
polynomials were obtained. In this paper, we give another particular solution when
δn �= 0,n≥ 0.
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2. Another particular solution of the system (1.15)–(1.23). First, under the trans-
formations (1.24)–(1.26), the relation (1.13) becomes

Pn+3(x)=Qn+3(x)−(n+3)δn+2Qn+2(x)

+(n+2)αn+3(1−ρn+2)Qn+1(x)

+(n+1)γn+2(1−θn+1)Qn(x), n≥ 0,
(2.1)

with

P0(x)=Q0(x)= 1,
P1(x)=Q1(x)−δ0,
P2(x)=Q2(x)−2δ1Q1(x)+α2(1−ρ1).

(2.2)

Likewise, by using (1.24)–(1.26), the system (1.15)–(1.23) is, also, transformed to

βn+1−βn =nδn−1−(n+2)δn, n≥ 1, (2.3)

β1−β0 =−2δ0, (2.4)
[
(n+3)ρn+1−(n+2)

]αn+2
n+2 −

[
nρn−(n−1)

]αn+1
n+1 = δ2n, n≥ 1, (2.5)

(3ρ1−2)α22 −α1 = δ20, (2.6)

[
(n+4)θn+1−(n+3)

] γn+2
n+3 −

[
nθn−(n−1)

] γn+1
n+1

=αn+2
{(
βn+2−βn+1−2δn

)−ρn+1(βn+2−βn+1−δn+1−δn)}, n≥ 1, (2.7)

(4θ1−3)γ23 −γ1 =α2
{
(β2−β1−2δ0)−ρ1(β2−β1−δ1−δ0)

}
, n≥ 1, (2.8)

(2ρn−ρn+1ρn−1)αn+1αn+2

= γn+1
{(
βn+2−βn−δn+1−δn−1

)−θn(βn+2−βn−2δn−1)}, n≥ 1, (2.9)

αn+1γn+2
[
2ρn−ρnθn+1−1

]+αn+3γn+1
[
2θn−θnρn+2−1

]= 0, n≥ 1, (2.10)

θn+2+ 1
θn

= 2, n≥ 1. (2.11)

As the starting point for the solution of the above system, we begin with equation
(2.11) which is Riccati equation and for which θn = 1,n≥ 1 is a trivial solution. In that
case, the above system becomes

βn+1−βn =nδn−1−(n+2)δn, n≥ 1; (2.12)

β1−β0 =−2δ0, (2.13)
[
(n+3)ρn+1−(n+2)

]αn+2
n+2 −

[
nρn−(n−1)

]αn+1
n+1 = δ2n, n≥ 1; (2.14)

(3ρ1−2)α22 −α1 = δ20, (2.15)
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γn+2
n+3 −

γn+1
n+1

=αn+2
{(
βn+2−βn+1−2δn

)−ρn+1(βn+2−βn+1−δn+1−δn)}, n≥ 1; (2.16)

γ2
3
−γ1 =α2

{
(β2−β1−2δ0)−ρ1(β2−β1−δ1−δ0)

}
, (2.17)[

2ρn−ρn+1ρn−1
]
αn+1αn+2 =−γn+1

(
δn+1−δn−1

)
, n≥ 1, (2.18)

αn+1γn+2[ρn−1]−αn+3γn+1[ρn+2−1]= 0, n≥ 1. (2.19)

It may be seen that equation (2.19) is verified if ρn = 1,n ≥ 1. Thus, in view of this
remark, the two following cases may be distinguished:

ρn = 1, n≥ 1 and ρn �= 1, n≥ 1. (2.20)

In this paper, we consider only the first case, that is, ρn = 1,n ≥ 1 (the simplest
case). Hence, the system (2.12)–(2.19) becomes

βn+1−βn =nδn−1−(n+2)δn, n≥ 0,(δ−1 = 0), (2.21)

αn+2
n+2 −

αn+1
n+1 = δ2n, n≥ 0, (2.22)

γn+2
n+3 −

γn+1
n+1 =αn+2(δn+1−δn), n≥ 0, (2.23)

γn+2(δn+2−δn)= 0, n≥ 0. (2.24)

Since γn+1 �= 0, shifting n �→ n+1, equation (2.24) leads to δn+2−δn = 0, n ≥ 0,
whose solutions are given in the following

δ2n = δ0, n≥ 0,
δ2n+1 = δ1, n≥ 0, (2.25)

with δ0 = (β0−β1)/2 and δ1 = (β0+β1−2β2)/6. It may be seen that δ1 = δ0 if and
only if β2 = 2β1−β0. Thus, two cases arise.
(A) δ1 = δ0,
(B) δ1 �= δ0.

2.1. The case (A) (δ1 = δ0). In this case, the system (2.21)–(2.24) leads to

βn+1−βn =−2δ0, n≥ 0, (2.26)

αn+2
n+2 −

αn+1
n+1 = δ20, n≥ 0, (2.27)

γn+2
n+3 −

γn+1
n+1 = 0, n≥ 0. (2.28)

From these, we easily obtain

βn = β0−2δ0n, n≥ 0,
αn+1 = (n+1)(δ20n+α1), n≥ 0, (2.29)

γn+1 = 12γ1(n+2)(n+1), n≥ 0,
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and

β̃n = β0−δ0(2n+1), n≥ 0,
α̃n+1 = (n+1)(δ20(n+1)+α1), n≥ 0, (2.30)

γ̃n+1 = 1
2γ1(n+2)(n+1), n≥ 0.

Note that if δ0 = 0, we obtain β̃n = βn,α̃n = αn and γ̃n = γn. Then Pn = Qn,n =
0,1,2, . . . and {Pn}n≥0 is, at the same time, 2-orthogonal and Appell sequence [5, 6].
In this case, the polynomials obtained are the analogous of the classical orthogonal
polynomials of Hermite.

2.2. The case (B) (δ1 �= δ0). First, from (2.21), we obtain, for n �→ 2n+1 and n �→
2n,β2n = β0−(δ0+3δ1)n,n≥ 0 and β2n+1 = β1−(δ1+3δ0)n, n≥ 0, respectively.
Secondly, from (2.22), for n �→ 2n and n �→ 2n+1 we, respectively, obtain

α2n+2
2n+2 −

α2n+1
2n+1 = δ20, n≥ 0, (2.31)

α2n+3
2n+3 −

α2n+2
2n+2 = δ21, n≥ 0, (2.32)

These give easily

α2n+1 = (2n+1)((δ20+δ21)n+α1), n≥ 0, (2.33)

α2n+2 = (2n+2)((δ20+δ21)n+α1+δ20), n≥ 0. (2.34)

Finally, from (2.23) and taking into account the last results, we, also, obtain

γ2n+2
2n+3 −

γ2n+1
2n+1 = (δ1−δ0)α2n+2, n≥ 0, (2.35)

γ2n+3
2n+4 −

γ2n+2
2n+2 = (δ0−δ1)α2n+3, n≥ 0, (2.36)

which yield

γ2n+1 = (2n+2)(2n+1)
(
(δ0−δ1)δ21n+

γ1
2

)
, n≥ 0, (2.37)

γ2n+2 = (2n+3)(2n+2)
(
(δ1−δ0)δ20(n+1)+

γ1
2
+(δ1−δ0)α1), n≥ 0. (2.38)

Two subcases arise.
(B1) δ0 = 0.

β2n = β0−3δ1n, n≥ 0;
β2n+1 = β1−δ1n, n≥ 0,
α2n+1 = (2n+1)(δ21n+α1), n≥ 0;
α2n+2 = (2n+2)(δ21n+α1), n≥ 0,

γ2n+1 = (2n+2)(2n+1)
(
−δ31n+

γ1
2

)
, n≥ 0,

γ2n+2 = (2n+3)(2n+2)
(
δ1α1+ γ1

2

)
, n≥ 0.

(2.39)
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(B2) δ1 = 0.
β2n = β0−δ0n, n≥ 0;

β2n+1 = β1−3δ0n, n≥ 0,
α2n+1 = (2n+1)(δ20n+α1), n≥ 0;
α2n+2 = (2n+2)(δ20(n+1)+α1), n≥ 0,
γ2n+1 = γ1

2
(2n+2)(2n+1), n≥ 0;

γ2n+2 = (2n+3)(2n+2)
(
−δ30(n+1)−δ0α1+

γ1
2

)
, n≥ 0.

(2.40)

From now on, we are only interested in the sequence of polynomials obtained in case
(A) with δ0 �= 0 (fixed), and, under some conditions, we shall be concerned mainly with
the properties of the resulting polynomials. We show that some of these properties
are analogous to the Laguerre’s polynomials ones. For this, we note first that when
θn = 1 and ρn = 1, the relations (2.1) and (2.2) become

Pn+1(x)=Qn+1(x)−(n+1)δnQn(x), n≥ 0. (2.41)

This relation plays a fundamental role in the next section, it allows us to derive some
properties as differential-recurrence relation, a third-order differential equation, and
a generating function of the resulting polynomials.

3. Some properties of the sequence obtained in case A

3.1. A differential-recurrence relation

Proposition 3.1. The sequence {Pn}n≥0 obtained in case (A) satisfies the following
differential-recurrence relation:

φ(x)Qn(x)= Pn+1(x)−anPn(x)−bnPn−1(x), n≥ 0(P−1 = 0), (3.1)

where

φ(x)= x−
(
β0+ α1

δ0
+ γ1
2δ20

)
, (3.2)

an = δ0n+ α1
δ0
+ γ1
2δ20

, n≥ 0, (3.3)

bn = γ1
2δ0

n, n≥ 0. (3.4)

Proof. First, from (2.41), we have

P ′n+2(x)= (n+2)Pn+1(x)+δ0(n+2)P ′n+1(x), n≥ 0 (3.5)

which we write for the subscripts n,n+1, and n+3 as follows:
P ′n(x)=nPn−1(x)+δ0nP ′n−1(x), n≥ 0, (3.6)

P ′n+1(x)= (n+1)Pn(x)+δ0(n+1)P ′n(x), n≥ 0, (3.7)

P ′n+3(x)= (n+3)Pn+2(x)+δ0(n+3)P ′n+2(x), n≥ 0. (3.8)
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Substituting for P ′n+2 from (3.5) into (3.8), we get

P ′n+3(x)= (n+3)Pn+2(x)+δ0(n+3)(n+2)Pn+1(x)
+δ20(n+3)(n+2)P ′n+1(x), n≥ 0. (3.9)

Now, according to (2.29), the recurrence relation (1.11) gives, for n≥ 0,

Pn+3(x)=
(
x−β0+2δ0(n+2)

)
Pn+2(x)

−(n+2)(δ20(n+1)+α1)Pn+1(x)− γ1
2
(n+2)(n+1)Pn(x), (3.10)

which gives by differentiation

Pn+2(x)= P ′n+3(x)−
(
x−β0+2δ0(n+2)

)
P ′n+2(x)

+(n+2)(δ20(n+1)+α1)P ′n+1(x) (3.11)

+ γ1
2
(n+2)(n+1)P ′n(x), n≥ 0.

Substituting for P ′n+3, P
′
n+2, and P ′n from (3.9), (3.5), and (3.7), respectively, into (3.11)

yields

(
−δ0(x−β0)+α1+ γ1

2δ0

)
P ′n+1(x)

=−Pn+2(x)+
(
x−β0+δ0(n+1)

)
Pn+1(x)+ γ1

2δ0
(n+1)Pn(x). (3.12)

From this, using the recurrence relation (3.10) by shifting n �→n−1, we easily obtain
the differential relation (3.1).

3.2. A third-order differential equation

Proposition 3.2. The polynomials Pn, n= 0,1, . . . satisfy the following third-order
differential equation:

δ20φ(x)Y
′′′ +(2δ0(x−β0)−α1+δ20)Y ′′ +(x−β0−δ0(n−1))Y ′ −nY = 0, n≥ 0,

(3.13)

where Y = Pn(x).

Proof. From (3.1), we have

φ(x)P ′n+1(x)= (n+1)Pn+1(x)−(n+1)anPn(x)−(n+1)bnPn−1(x), n≥ 0. (3.14)

Differentiating twice, we successively obtain

φ(x)P ′′n+1(x)=nP ′n+1(x)−(n+1)anP ′n(x)−(n+1)bnP ′n−1(x), n≥ 0 (3.15)

and

φ(x)P ′′′n+1(x)= (n−1)P ′′n+1(x)−(n+1)anP ′′n (x)−(n+1)bnP ′′n−1(x), n≥ 0. (3.16)
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Now, from the recurrence relation (3.10), by shifting n �→n−1, we get
γ1
2
(n+1)nPn−1(x)=

(
x−β0+2(n+1)δ0

)
Pn+1(x)

−(n+1)(nδ20+α1)Pn(x)−Pn+2(x),
(3.17)

and by differentiation, we obtain

γ1
2
(n+1)nP ′n−1(x)= Pn+1(x)+

(
x−β0+2δ0(n+1)

)
P ′n+1(x)

−(n+1)(δ20n+α1)P ′n(x)−P ′n+2(x).
(3.18)

Using (3.5) to eliminate P ′n+2, the last equation becomes

γ1
2
(n+1)nP ′n−1(x)=−(n+1)Pn+1(x)+

(
x−β0+δ0n

)
P ′n+1(x)

−(n+1)(δ20n+α1)P ′n(x),
(3.19)

which yields by differentiating again

γ1
2
(n+1)nP ′′n−1(x)=−nP ′n+1(x)+

(
x−β0+δ0n

)
P ′′n+1(x)

−(n+1)(δ20n+α1)P ′′n (x),
(3.20)

and for n �→n+1
γ1
2
(n+2)(n+1)P ′′n (x)=−(n+1)P ′n+2(x)+

(
x−β0+δ0(n+1)

)
P ′′n+2(x)

−(n+2)(δ20(n+1)+α1)P ′′n+1(x).
(3.21)

Using (3.5) again, we obtain

γ1
2
(n+1)P ′′n (x)=

(
δ0(x−β0)−α1

)
P ′′n+1(x)+(x−β0)P ′n+1(x)−(n+1)Pn+1(x).

(3.22)

Then (3.20) becomes

γ1
2
(n+1)nP ′′n−1(x)=

2
γ1

(
δ20n+α1

)
(n+1)Pn+1(x)

−
(
2
γ1

(
δ20n+α1

)
(x−β0)+n

)
P ′n+1(x)

+
(
x−β0+δ0n− 2

γ1

(
δ20n+α1

)(
δ0(x−β0)−α1

))
P ′′n+1(x).

(3.23)

Now, by using (3.22) and (3.23) to eliminate P ′′n and P
′′
n−1 in (3.16) and shifting n �→

n−1, the differential equation (3.13) follows easily.
Remark 3.1. (1) Since the values β0,δ0,α1,and γ1 are arbitrary, with δ0 �= 0 and

γ1 �= 0, then the polynomials obtained in case (A) constitute, a priori, a four-parameter
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family. But, in the rest of this paper, we fix δ0,γ1 and give special importance to the
case when δ0 =−1 and γ1 = 2. In this case, the differential equation (3.13) becomes
(x−β0+α1−1)Y ′′′ +(−2x+2β0−α1+1)Y ′′ +(x−β0−1+n)Y ′ −nY = 0, n≥ 0.

(3.24)

In order to determine the family of 2-OPS analogous to the classical Laguerre’s one, we
first transform the singularity of the above differential equation to the origin. Indeed,
it is clear that equation (3.24) has a singularity at the point x0 = β0−α1+1. Then by an
appropriate change of variable, this singularity may be transformed to the origin, that
is, β0−α1+1= 0, i.e., α1 = β0+1. In this case, we pose β0 = α+2 so that α1 = α+3.
Thus, the differential equation (3.24) takes the form

xY ′′′ +(−2x+α+2)Y ′′ +(x−α−3+n)Y ′ −nY = 0, n≥ 0. (3.25)

Recall that the classical Laguerre polynomials satisfy the following second-order dif-
ferential equation:

xy ′′ +(−x+α+1)y ′ +ny = 0, n≥ 0. (3.26)

(2) Further, in this case the third-order recurrence relations (1.11) and (1.12) become

Pn+3(x)=
(
x−(2(n+3)+α))Pn+2(x)−(n+2)(n+α+4)Pn+1(x)
−(n+2)(n+1)Pn(x), n≥ 0,

P0(x)= 1,
P1(x)= x−(α+2),
P2(x)= x2−2(α+3)x+(α+4)(α+1)+1

(3.27)

and

Qn+3(x)=
(
x−(2(n+3)+α+1))Qn+2(x)−(n+2)(n+α+5)Qn+1(x)

−(n+2)(n+1)Qn(x), n≥ 0,
Q0(x)= 1,
Q1(x)= x−(α+3),
Q2(x)= x2−2(α+4)x+(α+5)(α+2)+1.

(3.28)

From these, by taking into account the dependence on the parameter α and putting
Pn(x)= Pn(x;α),n≥ 0, it may be seen that Qn(x)= Pn(x;α+1),n≥ 0, i.e.,

d
dx

Pn+1(x;α)= (n+1)Pn(x;α+1), n≥ 0. (3.29)

Further, the relations (2.41) and (3.1), also, become

Pn+1(x;α)= Pn+1(x;α+1)+(n+1)Pn(x;α+1), n≥ 0, (3.30)

xPn(x;α+1)= Pn+1(x;α)+(n+α+2)Pn(x;α)+nPn−1(x;α), n≥ 0. (3.31)

The relations (3.29)–(3.31) are analogous to the relations (1.4)–(1.6) satisfied by clas-
sical Laguerre polynomials {L(α)n }n≥0. Therefore, the polynomials Pn(·;α), n= 0,1, . . .
are called the 2-orthogonal polynomials of Laguerre type.
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3.3. A generating function. Let G(x,t) be the generating function of the polyno-
mials Pn(x)= Pn(x;α),n≥ 0, say

G(x,t)=
∞∑
n=0

Pn(x;α)
tn

n!
. (3.32)

By using the relations (3.30), (3.31) and the definition (3.32), it is easy to verify that
G(x,t) satisfies the properties

(1+t)∂xG(x,t)= tG(x,t), (3.33)

x∂xG(x,t)= t(1+t)∂tG(x,t)+t(t+α+2)G(x,t). (3.34)

Now, from (3.33) and (3.34), we easily obtain

(1+t)2∂tG(x,t)=
[
x−(1+t)(t+α+2)]G(x,t), (3.35)

where ∂x = ∂/∂x and ∂t = ∂/∂t .

Proposition 3.3. The generating function G(x,t) has the form

G(x,t)= e−t(1+t)−α−1ext/(1+t). (3.36)

Proof. From (3.33), we have ∂xG(x,t) = t
1+t G(x,t). By integrating both sides of

this equality with respect to x, from 0 to x, we obtain

G(x,t)=A(t)ext/(1+t), (3.37)

with A(t) = G(0, t). Now, to calculate A(t), substituting (3.37) in (3.34), we get (1+
t)A′(t) = −(t+α+2)A(t). This yields A(t) = C(1+ t)−α−1e−t , where the constant C
is given by C =A(0)= 1. Thus, A(t)= (1+t)−α−1e−t .

Remark 3.2. (1) The generating function obtained here has the form G(x,t) =
A(t)exH(t), withA(t)= (1+t)−α−1e−t , andH(t)= t/(1+t), that is, generating function
of type Scheffer. Thus, the polynomials Pn(·;α),n= 0,1, . . . appear as particular case
of the class of 1/2-orthogonal polynomials studied in [1].
(2) On the other hand, if we substitute t by −t in (3.36), we obtain

et(1−t)−α−1e−xt/(1−t) =
∞∑
n=0

(−1)nPn(x;α)t
n

n!
=

∞∑
n=0

P̃n(x;α)tn, (3.38)

where P̃n := (−1)n/n! Pn,n= 0,1, . . . . The polynomials P̃n(·;α),n= 0,1, . . . are the non
monic polynomials corresponding to the family of polynomials Pn(·;α),n = 0,1, . . . .
They are analogous to the Laguerre polynomials L(α)n ,n = 0,1, . . . defined by the gen-
erating function (1.2). From the expression of the two generating functions of the
polynomials L(α)n and P̃n(·;α), we can write

∞∑
n=0

P̃n(x;α)tn = et
∞∑
n=0

L(α)n (x)tn. (3.39)
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By using the expansion of the two members of this identity as a power series in t, we
obtain, by identification,

P̃n(x;α)=
n∑
k=0

1
(n−k)!L

(α)
k (x), n= 0,1, . . . , (3.40)

Pn(x;α)=
n∑
k=0

(−1)n+k
(
n
k

)
L̂(α)k (x), n= 0,1, . . . . (3.41)

Examples.

P0(x;α)= L̂(α)0 (x)= 1,
P1(x;α)= L̂(α)1 (x)− L̂(α)0 (x)= x−(α+2),
P2(x;α)= L̂(α)2 (x)−2L̂(α)1 (x)+ L̂(α)0 (x)= x2−2(α+3)x+(α+4)(α+1)+1,
P3(x;α)= L̂(α)3 (x)−3L̂(α)2 (x)+3L̂(α)1 (x)− L̂(α)0 (x)

= x3−3(α+4)x2+3(α2+7α+11)x−(α3+9α2+23α+16),
...

(3.42)

(3) The Languerre polynomials
{
L(α)n

}
n≥0 are, also, defined by the Rodrigues’s formula

L̂(α)n (x)= (−1)nx−αex dn

dxn (x
α+ne−x), n= 0,1, . . . . (3.43)

Then from (3.41) we can also write

Pn(x;α)= (−1)nx−αex
n∑
k=0

(
n
k

)
dk

dxk

(
xα+ke−x

)
, n= 0,1, . . . . (3.44)

4. Integral representations. We are, now, interested in this section in the integral
representation of the linear functionalsω0 andω1 with respect to which the sequence
{Pn(·;α)}n≥0 is 2-orthogonal. For this, we use the same technique explained in [8].
First, we start with the 2-OPS satisfying the recurrence relation (1.11) with βn,αn and
γn given in (2.29). Since the sequence {Pn}n≥0 is “classical”, according to the charac-
terization given in [7], we have the following theorem which is an easy application of
[7, Thm. 3.1] and which we adapt to our situation:

Theorem 4.1 [7]. For the 2-OPS {Pn}n≥0 satisfying the recurrence relation (1.11)
with βn,αn and γn given by (2.29), its associated vector functional Ω = t(ω0,ω1) sat-
isfies the following vector distributional equation:

D(Φ�)+Ψ�= 0, (4.1)

where Φ and Ψ are two 2×2 polynomials matrices

Φ(x)=
(
ϕ0
0(x) ϕ1

0(x)
ϕ0
1(x) ϕ1

1(x)

)
, Ψ(x)=

(
0 1

ψ(x) ζ

)
, (4.2)
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with ϕ0
0(x)= 1, ϕ1

0(x)=−δ0, ϕ0
1(x)=−2γ−11 δ0(x−β0), ϕ1

1(x)= 1+2γ−11 δ0α1,
ψ(x)= 2γ−11 (x−β0) and ζ =−2γ−11 α1.
Moreover, the vector functional Ω̃ = t(ω̃0,ω̃1

)
associated with the sequence {Qn}n≥0

is given by Ω̃ = Φ(x)Ω.
Recall that, for a linear functionalω, the derivativeDω=ω′ and the left-multiplica-

tion of ω by a polynomial h are defined by 〈Dω,f 〉 = −〈ω,f ′〉, and 〈hω, f 〉 =
〈ω,hf 〉,f ∈ �.
The main result here is

Theorem 4.2. The two linear functionalsω0,ω1, associated with the 2-classical se-
quence {Pn(·;α)}n≥0, for α>−1, respectively, have the following integral representa-
tions:

〈ω0,f 〉 =
∫ +∞
0

�0(x)f(x)dx, f ∈�;

〈ω1,f 〉 =
∫ +∞
0

�1(x)f(x)dx, f ∈�;
(4.3)

with the weight functions �0 and �1 being given by

�0(x)= e−1�(x)I∗α(x);

�1(x)= e−1�(x)
[
xI∗α+1(x)−I∗α(x)

]
,

(4.4)

where �(x)= xαe−x and I∗α =
∑+∞

k=0(xk/k! Γ(k+α+1)).
Proof of Theorem 4.1. For the proof of (4.1) and the explicit formulas for the

elements of the matrix Ψ , see [7]. To calculate the expressions of the polynomials ϕi
j ,

we proceed as follows: Applying the functional ω̃0 (resp., ω̃1) to (2.41), since {ω̃n}n≥0
is the dual sequence of {Qn}n≥0 we, respectively, obtain

〈ω̃0,P0〉 = 1,
〈ω̃0,P1〉 = −δ0,
〈ω̃0,Pn〉 = 0; n≥ 2,

(4.5)

and

〈ω̃1,P0〉 = 0,
〈ω̃1,P1〉 = 1,
〈ω̃1,P2〉 = −2δ0,
〈ω̃1,Pn〉 = 0; n≥ 3,

(4.6)

so that, by Lemma 1.1, we have ω̃0 = λ0ω0+λ1ω1 and ω̃1 = η0ω0+η1ω1+η2ω2,
with λ0 = 1,λ1 =−δ0,η0 = 0,η1 = 1 ,and η2 =−2δ0. Now, from [14, théorème 2.1], the
functional ω2 can be written in terms of ω0 and ω1 as ω2 = (ax+b)ω0+cω1. To
determine the coefficients a,b, and c, we apply ω2 to the polynomials P0,P1, and P2.
Using the fact that {ωn}n≥0 is the dual sequence of {Pn}n≥0, we easily obtain

0= 〈ω2,P0〉 = aβ0+b,
0= 〈ω2,P1〉 = aα1+c,
1= 〈ω2,P2〉 = aγ1,

(4.7)



ON 2-ORTHOGONAL POLYNOMIALS OF LAGUERRE TYPE 43

so that a = γ−11 ,b = −γ−11 β0 and c = −γ−11 α1. Whence, ω̃0 = ω0 −δ0ω1 and ω̃1 =
−2γ−11 δ0(x−β0)ω0+(1+2γ−11 δ0α1)ω1. Consequently,

(
ω̃0

ω̃1

)
=
(

1 −δ0
−2γ−11 δ0(x−β0) 1+2γ−11 δ0α1

)(
ω0

ω1

)
, (4.8)

and then

Φ(x)=
(

1 −δ0
−2γ−11 δ0(x−β0) 1+2γ−11 δ0α1

)
. (4.9)

Proof of Theorem 4.2. In all the sequel, the values δ0 = −1, β0 = α+2, α1 =
α+3 and γ1 = 2 are retained. Then, from Theorem 4.1, we obtain

Φ(x)=
(

1 1
x−(α+2) −(α+2)

)
, Ψ(x)=

(
0 1

x−(α+2) −(α+3)

)
. (4.10)

Then, from (4.1), we obtain

ω′
0+ω′

1+ω1 = 0, (4.11)

(x−α−2)ω′
0−(α+2)ω′

1+(x−α−1)ω0−(α+3)ω1 = 0. (4.12)

From these, we easily obtain

xω′′
0 +(2x−α+1)ω′

0+(x−α)ω0 = 0 (4.13)

and

ω1 = xω′
0+(x−α−1)ω0. (4.14)

To find integral representations of both the functionalsω0 andω1, we use equations
(4.13) and (4.14). The problem consists in determining weight functions �0 and �1

(depending in �0) such that

〈ω0,f 〉 =
∫

�
f(x)�0(x)dx, ∀f ∈�, (4.15)

〈ω1,f 〉 =
∫

�
f(x)�1(x)dx, ∀f ∈�. (4.16)

We suppose that function �0 is regular as far as it is necessary. From (4.13), by inte-
gration by parts, we obtain

∫
�

{
x�′′

0 (x)+(2x−α+1)�′
0(x)+(x−α)�0(x)

}
dx

+
[
x�0(x)f ′(x)−{(2x−α)�0(x)+x�′

0(x)}f(x)
]

�
= 0. (4.17)

If the following condition holds:
[
x�0(x)f ′(x)−

{
(2x−α)�0(x)+x�′

0(x)
}
f(x)

]
�
= 0, (4.18)
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we obtain
∫

�

{
x�′′

0 (x)+(2x−α+1)�′
0(x)+(x−α)�0(x)

}
dx = 0, (4.19)

which leads to

x�′′
0 (x)+(2x−α+1)�′

0(x)+(x−α)�0(x)= λg(x), (4.20)

where λ is an arbitrary constant and g is a function representing the null functional
over the path � ∫

�
g(x)xndx = 0, n≥ 0. (4.21)

Here, we consider only the representation in terms of integrals evaluated along (an
interval of) the real axis. Setting λ= 0, the differential equation (4.20) becomes

x�′′
0 (x)+(2x−α+1)�′

0(x)+(x−α)�0(x)= 0. (4.22)

Under the transformation �0(x)= e−xU(s) with s = 2√x, the last becomes

sU ′′(s)−(2α−1)U ′(s)−sU(s)= 0. (4.23)

Now, by setting U(s)= sαV(s) in (4.23), we obtain that V satisfies the following Bessel
differential equation of imaginary argument:

s2V ′′(s)+sV ′(s)−(α2+s2)V(s)= 0. (4.24)

A solution of (4.24) satisfying the condition (4.18) is to be found. Thus, by choosing
�= [0,+∞[, a solution of (4.24) can be taken as V(s)= KIα(s), where Iα is the mod-
ified Bessel function of the first kind and K is the normalization constant which we
determine below. Then a solution of (4.22) is given by

�0(x)= 2αKxα/2e−xIα(2
√
x). (4.25)

The function Iν(z), for arbitrary order ν , is defined by (see, e.g., [13])

Iν(z)= i−νJν(iz)=
+∞∑
k=0

(z/2)ν+2k

k! Γ(k+ν+1) , |z|<+∞, |argz|<π, (4.26)

where Jν(z) is the Bessel function of order ν . It is evident from the expansion given in
the right-hand side of (4.26) that Iν(z) is an analytic function of the complex variable
z and, for z > 0 and ν ≥ 0, it is a positive function which increases monotonically as
z �→+∞. The asymptotic behavior of this function as z �→+∞ is given by

Iν(z)∼ ez√
2πz

, z �→+∞. (4.27)

For small z, we have the asymptotic formula

Iν(z)∼ zν

2νΓ(ν+1) , z �→ 0 (4.28)
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and, therefore, Iν(0)= 0 if ν > 0, I0(0)= 1. Otherwise, Iν satisfies some simple recur-
rence relations

2I′ν(z)= Iν−1(z)+Iν+1(z),
2νz−1Iν(z)= Iν−1(z)−Iν+1(z).

(4.29)

Now, we are ready to determine the constant K and verify that the condition (4.18)
holds. The normalization condition

〈ω0,1〉 =
∫ +∞
0

�0(x)dx = 1 (4.30)

leads to

2αK
∫ +∞
0

xα/2e−xIα(2
√
x)dx = 1. (4.31)

We first evaluate the integral

�=
∫ +∞
0

xα/2e−xIα(2
√
x)dx = 2

∫ +∞
0

tα+1e−t
2
Iα(2t)dt. (4.32)

But, from (4.26), we have

Iα(2t)=
+∞∑
k=0

tα+2k

k! Γ(k+α+1) . (4.33)

Then

�= 2
∫ +∞
0

tα+1e−t
2
dt

+∞∑
k=0

tα+2k

k! Γ(k+α+1)

= 2
+∞∑
k=0

1
k! Γ(k+α+1)

∫ +∞
0

e−t
2
t2α+2k+1dt.

(4.34)

The exchange of integration and summation is justified by an absolute convergence
argument. Next, under the transformation u= t2, we easily obtain that

�=
+∞∑
k=0

1
k! Γ(k+α+1)

∫ +∞
0

e−uuα+kdu= e. (4.35)

Whence, (4.31) gives K = 2−αe−1 and the weight function �0 is given by

�0(x)= xα/2e−x−1Iα(2
√
x). (4.36)

Let us define the function I∗α by

I∗α(x)= x−α/2Iα(2
√
x)=

+∞∑
k=0

xk

k! Γ(k+α+1) . (4.37)

Thus, �0 can be written as

�0(x)= xαe−x−1I∗α(x)= e−1�(x)I∗α(x), (4.38)
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where, �(x)= xαex is the weight function with respect to which the classical Laguerre
polynomials are orthogonal. It is clear that the weight function is positive definite.
Finally, we must verify that the condition (4.18) holds

[
x�0(x)f ′(x)−

{
(2x−α)�0(x)+x�′

0(x)
}
f(x)

]+∞
0
= 0. (4.39)

Indeed, from (4.38), we have

x�0(x)= xα+1e−x−1I∗α(x)= e−1xI∗α(x)�(x). (4.40)

On the other hand, by differentiating �0, we obtain

�′
0(x)= e−1

{
�(x)I∗α ′(x)+�′(x)I∗α(x)

}
= e−1

{
�(x)I∗α+1(x)+

(
αx−1−1)�(x)I∗α(x)}

= e−1�(x)I∗α+1(x)+
(
αx−1−1)�0(x).

(4.41)

Because I∗α ′(x)= I∗α+1(x) and �′(x)=
(
αx−1−1)�(x). Then,

x�′
0 = e−1xI∗α+1(x)�(x)+(α−x)�0(x) (4.42)

and

(2x−α)�0(x)+x�′
0(x)= x�0(x)+e−1x�(x)I∗α+1(x)

= e−1x�(x)
[
I∗α+1(x)+I∗α(x)

]
.

(4.43)

From (4.40) and (4.43), it is easy to see that at the origin when α >−1, the condition
(4.18) is verified.
Otherwise, from the asymptotic behavior (4.27) of Iα, as x �→+∞, we obtain

I∗α(x)∼ (4π)−1/2x−(2α+1)/4e2
√
x and I∗α+1(x)∼ (4π)−1/2x−(2α+3/4)e2

√
x. (4.44)

Then,

x�(x)I∗α(x)∼ (4π)−1/2x(2α+3)/4e−x+2
√
x (4.45)

and

x�(x)I∗α+1(x)∼ (4π)−1/2x(2α+1)/4e−x+2
√
x. (4.46)

Whence, x�0(x) �→ 0, as x �→+∞ and (2x−α)�0(x)+x�′
0(x) �→ 0, as x �→+∞.

Then the condition (4.18) holds. Now, from (4.14), we have

〈ω1,f 〉 =
〈
xω′

0,f
〉+〈(x−α−1)ω0,f 〉

= 〈ω′
0,xf(x)

〉+〈ω0,(x−α−1)f (x)〉
= −〈ω0,(xf(x))′

〉+〈ω0,(x−α−1)f (x)〉, ∀f ∈�.

(4.47)
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By integrating by parts, we obtain

〈
ω0,(xf(x))′

〉=
∫ +∞
0

(
xf(x)

)′
�0(x)dx

= xf(x)�0(x)
]+∞
0
−
∫ +∞
0

xf(x)�′
0(x)dx.

(4.48)

Since xf(x)�0(x)
]+∞
0 = 0 and by writing 〈ω1,f 〉 =

∫+∞
0 f(x)�1(x)dx, we easily ob-

tain that the weight function �1 is given by

�1(x)= x�′
0(x)+(x−α−1)�0(x)= e−1�(x)

[
xI∗α+1(x)−I∗α(x)

]
. (4.49)

Note that if we take into account the dependence on the parameter α and setting
�0(x)=�0(x;α) and �1(x)=�1(x;α), it may be seen that

�1(x;α)=�0(x;α+1)−�0(x;α). (4.50)
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