LIMIT SETS IN PRODUCT OF SEMI-DYNAMICAL SYSTEMS

RAMJEE PRASAD BHAGAT

(Received 12 November 1996 and in revised form 9 March 1998)

ABSTRACT. Continuing the study of the properties of Poisson stability and distality [4], we mention the conditions under which $\Omega_X(x) = \Pi \Omega_\alpha(x_\alpha), \alpha \in I$ and thus, the product of Poisson stable motions remains Poisson stable in the product system.

Keywords and phrases. Semi-dynamical system, Lagrange stability, distality, limit sets.

1991 Mathematics Subject Classification. 47H10, 54H25.

1. Introduction. We deal mainly with the product of *w*-limit sets in the product space of semi-dynamical systems (s.d.s.). In [1], Prem Bajaj has shown that the product of semi-dynamical systems is a semi-dynamical system. He has also shown that $\Pi\Omega_{\alpha}(x_{\alpha}), \alpha \in I$ contains the *w*-limit set $\Omega_{x}(x)$ of *x* in the product system. In general, equality does not hold in the above. Indeed $\Omega_{x}(x)$ may be empty. He has given two theorems: one in which $\Omega_{x}(x)$ is nonempty and the other indicating a case of equality viz. Theorems 2.3 and 2.4.

In this paper, continuing the study of the properties of Poisson stability and distality [4], we mention the conditions under which $\Omega_x(x) = \Pi\Omega_\alpha(x_\alpha)$, $\alpha \in I$, $x = \{x_\alpha\}$ and therefore, the product of Poisson stable motions, under these conditions, is Poisson stable.

2. Definitions and notations

DEFINITION 2.1. A continuous mapping $\pi : X \times \mathbb{R}^+ \to X$ on a topological space X is said to define a semi-dynamical system (X,π) if $\pi(x,0) = x$ and $\pi(\pi(x,t),s) = \pi(x,t+s)$ for every $x \in X$ and $t, s \in \mathbb{R}^+$. (\mathbb{R}^+ denotes the set of nonnegative reals.)

DEFINITION 2.2. Let $(X_{\alpha}, \pi_{\alpha})$, $\alpha \in I$ be a family of dynamical systems. Let $X = \Pi X_{\alpha}$ be the product space. Let $x \in X$ and $x = \{x_{\alpha}\}$. Define a map π from $X \times \mathbb{R}$ into X by $\pi(x_{\alpha}t) = (x_{\alpha}t)$, $\alpha \in I$, then (X, π) is a dynamical system. The dynamical system (X, π) , obtained above, is called the direct product or the product of the family $(X_{\alpha}, \pi_{\alpha}), \alpha \in I$.

We take the usual definitions of positive limit set Ω_x , positive distal, positive Poisson stable, and positive Lagrange stable motions. As usual, we drop the word positive and we use the notations of [1, 4].

3. Main results

PROPOSITION 3.1. Let $(X_{\alpha}, \pi_{\alpha})$, $\alpha \in I$, be a family of {Lagrange stable} {distal} s.d.s.

and (X,π) the product s.d.s. Let $x \in X$ and $x = \{x_{\alpha}\}$, then (X,π) is {Lagrange stable} {distal}.

PROPOSITION 3.2. If a Lagrange stable motion is Poisson stable and distal, then $ClY(x) = Y(x) = \Omega_x$.

PROOF. The proof follows from [4, Thm. 2.1].

THEOREM 3.3. Let $(X_{\alpha}, \pi_{\alpha})$, $\alpha \in I$, be a family of dynamical systems and (X, π) the product of the dynamical systems. Let $x \in X$ and $x = \{x_{\alpha}\}$. Then $\Omega_{X}(x) \subseteq \Pi\Omega_{\alpha}(x_{\alpha})$, where $\Omega_{\alpha}(x_{\alpha})$ is the positive limit set of x_{α} in the dynamical systems $(X_{\alpha}, \pi_{\alpha})$. (The two π 's have distinct meanings according to the context.)

Since, in general, the equality does not hold and Ω_x may be empty, the Poisson stability in the constituent dynamical system may be lost from the product of the dynamical systems. Here, we find the conditions under which $\Omega_x(x) = \Pi \Omega_\alpha(x_\alpha)$, $\alpha \in I$ and thus, the product of Poisson stable motions remains Poisson stable in the product system.

THEOREM 3.4. *If a compact motion is Poisson stable and distal, then it is a compact recurrent motion.*

PROOF. Let the motion $\pi(x, t)$ be Poisson stable and distal, then its trajectory $\Upsilon(x)$ is closed. Therefore,

$$\Upsilon(x) = \operatorname{Cl}\Upsilon(x) = \Omega_x. \tag{3.1}$$

As the motion is compact, each of the above sets is compact and minimal and thus, by Birkhoff recurrence theorem, $\pi(x,t)$ is compact and recurrent.

THEOREM 3.5. Let (X, π) be a semi-dynamical system. Let π be a Lagrange stable, then π is distal if and only if, for every net t_i in \mathbb{R}^+ , the phase space

$$X = \{z \in X : xt_j \longrightarrow z \text{ for some } x \in X \text{ and some subnet } t_j \text{ of } t_i\}$$
(3.2)

[2, Thm. 2.6].

THEOREM 3.6. Let (X, π) be Lagrange stable and distal s.d.s. then every net in the trajectory $\Upsilon(x)$ of the Poisson stable motion $\pi(x,t)$ is a Cauchy net.

PROOF. Let Y(x) be the trajectory of the Poisson stable motion $\pi(x,t)$ in s.d.s. (X,π) which is Lagrange stable and distal. Let xt_n be a net in Y(x) which is compact (Proposition 3.2). Therefore, xt_n has a subnet, say xt_m with $xt_m \rightarrow z$, i.e., z is a cluster point of xt_n . Hence, xt_n is a Cauchy net.

THEOREM 3.7. Let $(x_{\alpha}, \pi_{\alpha})$, $\alpha \in I$, be a family of Lagrange stable and distal s.d.s. and (X, π) be the product s.d.s. Let $x \in X$ and $x = \{x_{\alpha}\}$. A motion $\pi(x, t)$ is Poisson stable in (X, π) if and only if $\pi_{\alpha}(x_{\alpha}, t)$ is Poisson stable in $(X_{\alpha}, \pi_{\alpha})$ for each $\alpha \in I$.

PROOF. Let $(x_{\alpha}, \pi_{\alpha}), \alpha \in I$, be a Lagrange stable and distal s.d.s. Let $\pi(x_{\alpha}, t) = x_{\alpha}t$ be a Poisson stable motion in $(X_{\alpha}, \pi_{\alpha}), \alpha \in I$, then its trajectory $Y_{\alpha}(x_{\alpha})$ is compact and the net $x_{\alpha}t_n, \alpha \in I$, is a Cauchy net in $Y_{\alpha}(x_{\alpha})$ (Theorem 3.6). Now, the Cauchy

nets $x_{\alpha}t_n$, $\alpha \in I$ yield the Cauchy net xt_n in Y(x) in (X, π) [3, p. 194]. As the product of compact sets is a compact set, Y(x) is compact and xt_n is a net in compact Y(x). Thus, it has a subnet $xt_m \to z$, i.e., z is a cluster point of xt_n . Hence, xt_n is frequently in every neighborhood U of z. Given a neighborhood U of z for every $i \in A$, there is a $j \in A$, $i \ge J$ such that $xt_i \in U$ however $t_i \to +\infty$. Hence, $\pi(x,t)$ is Poisson stable. The converse follows from [3, Thm. 25, p. 194] which states that a net in the product is a Cauchy net if and only if its projection into each coordinate space is a Cauchy net.

THEOREM 3.8. Let $(X_{\alpha}, \pi_{\alpha})$, $\alpha \in I$, be a family of Lagrange stable distal s.d.s. Let $x \in X$, $x = \{x_{\alpha}\}$, and (X, π) the product s.d.s. Let $Y_{\alpha}(x_{\alpha})$, $\alpha \in I$, be the product of trajectries. Then $\Pi Y_{\alpha}(x_{\alpha}) = Y(x)$. Moreover,

$$\Pi\Omega_{\alpha}(x_{\alpha}) = \Omega_{x}(x). \tag{3.3}$$

PROOF. Since each $\Upsilon_{\alpha}(x_{\alpha})$, $\alpha \in I$, is closed and compact,

 $CI\Pi\Upsilon_{\alpha}(x_{\alpha}) = \Pi CI\Upsilon_{\alpha}(x_{\alpha}) = CI\Upsilon(x), \qquad (3.4)$

$$\Pi \Upsilon_{\alpha}(x_{\alpha}) = \Upsilon(x). \tag{3.5}$$

Moreover,

$$\Pi\Omega_{\alpha}(x_{\alpha}) = \Omega_{x}(x). \tag{3.6}$$

REFERENCES

- P. N. Bajaj, *Products of semi-dynamical systems*, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund) (Berlin), Lecture Notes in Math, vol. 318, Springer, Verlag, 1973, pp. 23-29. MR 53 1549. Zbl 258.54042.
- [2] N. P. Bhatia and M. Nishihama, *Distal semidynamical systems*, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., 1974) (New York), vol. II, Academic Press, 1976, pp. 187-190. MR 58 31006. Zbl 359.54033.
- [3] J. L. Kelley, *General topology*, Springer-Verlag, New York, Berlin, 1975. MR 51 6681. Zbl 518.54001.
- [4] S. S. Prasad and A. Kumar, *Stable P and distal dynamical systems*, Internat. J. Math. Math. Sci. 7 (1984), no. 1, 181-185. MR 85e:34045. Zbl 562.54061.

BHAGAT: DEPARTMENT OF MATHEMATICS, A. S. COLLEGE BIKRAMGANJ, PIN 802212, ROHTAS, BIHAR, INDIA