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ABSTRACT. This paper consists of two main results. The first one shows that if S is a left
reversible semigroup of selfmaps on a complete metric space (M,d) such that there is
a gauge function @ for which d(f(x),f(y)) < @(6(0¢(x,»))) for f € S and x,y in M,
where 6 (Of(x,y)) denotes the diameter of the orbit of x,) under f, then S has a unique
common fixed point & in M and, moreover, for any f in S and x in M, the sequence of
iterates {f™(x)} converges to &. The second result is a common fixed point theorem for a
left reversible uniformly Lipschitzian semigroup of selfmaps on a bounded hyperconvex
metric space (M,d).
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1. Introduction. A gauge functionis an upper semicontinuous function @ : [0, ) —
[0, ) such that ¢ (0) =0 and @(t) <t for t > 0. A selfmap f on a metric space (M,d)
is said to be @-contractive if it satisfies

a(f(x),f() <e(d(x,y)), x,yEM. (1.1)

In 1969, Boyd and Wong [1] showed that a g-contractive selfmap f on a complete
metric space (M,d) has a unique fixed point £ in M and that, for any x in M, the
sequence of iteratives {f"(x)} converges to &. This result was generalized recently
by Huang and Hong [6], where they showed that if S is a left reversible semigroup
of @-contractive selfmaps on a complete metric space (M,d) for which there is an
X0 in M with bounded orbit O(xy), then S has a unique common fixed point & in M
and, furthermore, for any f in S and any x in M, the sequence of iterates {f"(x)}
converges to &. In Section 2 of this paper, we deal with the same common fixed point
problem for semigroups with (1.1) replaced by

a(f(x),f(») =p(6(0(x,»))), x,yEM,fES, (1.2)

or

a(fx),f() =@ (6(0r(x,»)), x,yEM,fES, (1.3)

where 6(O(x,y)) denotes the diameter of the orbit of x,y under S and (O (x,y))
denotes the diameter of the orbit of x,y under f.

On the other hand, Lim and Xu [10] established a fixed point theorem for uniformly
Lipschitzian mappings in metric spaces with uniform normal structure which is the
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metric space version of Casini and Maluta’s theorem in Banach spaces, (cf. Casini and
Maluta [2]). In the setting of bounded hyperconvex metric space, we extend Lim and
Xu’s theorem in Section 3 by showing a common fixed point theorem for left reversible
uniformly k-Lipschitzian semigroups.

2. Fixed point theorems for contractions. Let S be a semigroup of selfmaps on a
metric space (M,d). For any x in M, the orbit of x under S starting at x is the set O (x)
defined to be {x} USx, where Sx is the set {g(x):g € S}.If f € S, then the orbit of x
under f starting at x is the set O¢(x) := {f"x :n € NU{0}}, where f%x := x. For x,y
in M, the set O(x,y) is the union of O(x) and O(y), and Of(x,y) := Of(x)UOf(¥).
A subset K of M is said to be bounded if its diameter 6 (K ), defined to be sup{d(x,y) :
Xx,¥ € K},is finite. It is easy to check that O (x,y) is bounded provided that both O (x)
and O(y) are bounded.

We say that a semigroup S is near-commutative if, for any f,g in S, thereis t in S such
that fg = gt. Examples of near-commutative semigroups include all commutative
semigroups and all groups.

Also, recall that a semigroup S is said to be left reversible if, for any f,g in S, there
are a,b such that fa = gb. It is obvious that left reversibility is equivalent to the
statement that any two right ideals of S have nonempty intersection. Clearly, every
near-commutative semigroup is left reversible.

If @ :[0,0) — [0,) is a gauge function, then Chang [3] constructed a strictly in-
creasing continuous function «: [0, %) — [0, ) such that x(0) =0 and @ (t) < x(t) <t
for t > 0. This result is used in what follows.

Itis well known that if «x: [0, ) — [0, o) is a strictly increasing continuous function
such that x(t) < t(t > 0), then, for any t > 0, one has lim,_. «"(t) = 0, (cf. Huang
and Hong [6]).

THEOREM 2.1. Suppose that S is a near-commutative semigroup of continuous self-
maps on a complete metric space (M,d) such that the following conditions (i) and (ii)
are satisfied

(i) For any x in M, its orbit O (x) is bounded.

(ii) There exists a gauge function @ :[0,%) — [0, c0) with the property that, for any
fin S, there exists ny € N such that d(f™(x), f™(y)) < @(6(0(x,y))) for all
nz=nygandx,y inM.

Then S has a unique common fixed point & in M and, moreover, for any f inS and any
x in M, the sequence of iterates {f™(x)} converges to €.

PROOF. Choose a strictly increasing continuous function «: [0,0) — [0, ) such
that (0) =0 and @(t) < x(t) <t for t > 0. Then (ii) implies that

a(f"(x), f"(»)) <x(6(0(x,y))), foralln=nsandx,yin M. (2.1)
We now show that, for n = ny,
S(O(f™(x), ")) = x(6(0(x,¥))). (2.2)

Any two members u,v in O(f"(x), f"(y)) are of one of the four forms
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(@ u,v € 0(f"(x)),

(b) u,v € 0(f"(y)),

(© ueo(fr(x),veo(f (),

(d ueo(f™y)),veo(fr(x)).
In case (a), if u = sf"(x) and v = tf"(x) for some s,t € S, then, by the near-
commutativity of S, there are a,b in S such that sf" = f"a and tf" = f"b, and so

Sf™M(x), tf(x))

fra(x), f"b(x))

d(u,v)=d(
=d(
x(6(0(a(x),b(x)))) (2.3)
< o
< o(

IA

5(0(x)))

0(0(x,))).
Also, if u = f(x) and v = tf"(x) for some t € S, then choosing b € S such that
tf" = f"b, we get

d(u,v) =d(f™(x),tf"(x))

S(x), f"b(x))
5(0(x,b(x))))
5(0(x,))).

af
(

a
(2.4)

<«

x

IA

(
(
Likewise, in either the case of (b), (c), or (d), we also have d(u,v) < x(6(0O(x,y))).
Taking supremum over all u,v in O(f"(x), f"(y)), we conclude that (2.2) holds.
Next, we show that, for any f in S, there is §f in M such that, for any x in M, the

sequence of iterates {f"(x)} converges to &y. For this, let » be a member in M and,
for any k € N, let ax = §(O(fX"/ (x), £/ ())). We obtain from (2.2) that

0 <ar=38(0(f*" (x),f*"(3)))
< x(S(O(f* I (x), F*11s (4)))) (2.5)

=a(ak-1) < ag-1.
Repeating the procedure (2.5) k times, we get
ar < o*(5(0(x,y))). (2.6)

It then follows from (2.5) and (2.6) in conjunction with lim,, _ . «*(§(O(x,y))) = 0 that
limg_ay = 0. In particular, limkqmé(O(fk"f (x))) = 0. Now, for n = ny, choose the
largest k € N such that kny <n < (k+1)ny. Then once noticing that 6 (O (f"(x))) <
S(O(f*" (x))) and k — o as n — oo, we see that

057111_715106(0(f"(x)))sEé(O(fk"f(X)))ZO (2.7
and so,

lim5(0(f"(x))) = 0. (2.8)
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Hence, {f"(x)} is Cauchy and thus, lim,_. f"(x) = & for some & € M. For the
same reasons, we have lim;,_.., f"(y) = & for any y in M.
That & is a fixed point of f follows from the continuity of f. Indeed,

d(f (&), &r) = hmd(f (£ (&), f" (&)

= limd (f"*1 (&), " (§f)) (2.9)
=d(&s,&r) =0.

Finally, to complete our proof, it remains to show that, for any f,g in S, one has
&r = &,. For this, let m be the least common multiple of ny and ng, and as S is left
reversible, for any k € N, choose ay and by in S such that

fmag = g""by. (2.10)
Then, for any x in M, we have
a(&r,&g) = ,{ijnd(fkm(x),gkm(x))

< I%iimd(fkm(x),fkmak(x)) +lyimd(gkm(x),gkmbk(x))

e Y (2.11)
= [imo(5(0 (x,ax(x)))) + [im o (5 (0 (x, by (x))))
< ZIliim(xk(é(O(x))) =0,

which shows that & = &,. O

Here, we like to give two concrete examples for the above theorem.

EXAMPLE 2.1. Let M = R with the usual metric d(x,y) = |x —y| and let S be the
semigroup generated by

2 .
FiM—M:f(x)={3° ifx=20, (2.12)
0, if x <0
and
2 .
gM—M:gx)=1 3" ifx=0, (2.13)
0, if x <O0.

In addition, put @ : [0,0) — [0,%) : @(t) = 1/2t. Then S is commutative and, for
any x,y in M and any h in S, d(h(x),h(y)) < d(f(x),f(¥)) = d(g(x),g(¥)) <
@P(8(0(x,¥))).

EXAMPLE 2.2. Let M = {1,3,5,7} with the usual Euclidean metric d. Let «,f,y,0
be the selfmaps on M defined by «(1) = x(3) = 1, x(5) = 3, x(7) = 5, and B(1) =
B(3)=B(5)=1,B(7)=3,and y(1) =y(3) =1, y(5) = y(7) =3, and 0(1) = 0(3) =
0(5) = 0(7) = 1. Then S := {&,B,y,0} is a near-commutative semigroup under com-
position. Since ay = 6 and y«x = §, S is not commutative. Putting ny = 3, ng = n, = 2,
neg=1and @ :[0,0) — [0,00) : @(t) = 1/2t, it is easy to check that condition (ii) of
Theorem 2.1 is satisfied for this S.
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Let S be the semigroup generated by f, where

1, for x =0,
1

S:10,1] — [0,1]: f(x) ={ (2.14)

7X, forO<x <1.

Then [13, Ex. 2] showed that the continuity hypothesis on each member of S in
Theorem 2.1 cannot be dropped in general.
However, when condition (ii) of Theorem 2.1 is replaced by

d(f(x), f() <P (8(0r(x,¥))), (2.15)

the continuity condition on each member of S can be dropped and the semigroup S
itself can be relaxed to the case for which it is left reversible.

THEOREM 2.2. Suppose S is a left reversible semigroup of selfmaps on a complete
metric space (M,d) such that the following conditions (i) and (ii) are satisfied
(i) For any x inM and any f in S, the orbit Oy(x) is bounded;
(ii) There exists a gauge function @ : [0,0) — [0,00) such that d(f(x),f(y)) <
@ (6(0y(x,y))) forany f inS and any x,y in M. Then S has a unique common fixed
point € in M and, for any f in S and x in M, the sequence of iterates { f™(x)} converges

to &.

PROOF. It follows from [13, Thm. 2] that each f in S has a unique fixed point &
in M and, for any x in M, the sequence of iterates {f"(x)} converges to &r. So, to
complete the proof, it suffices to show that &y = &, for any f, g in S. Let n be any
positive integer. The left reversibility of § shows that there are a,, and b, in S such
that f*a, = g"b,. Also, condition (i) implies that, for any f in S and x in M,

sup{6(Of(x,h(x))):h €S} < . (2.16)

Thus, once we choose a strictly increasing continuous function « : [0,00) — [0, 0)
such that ¢(0) =0 and @(t) < x(t) <t for t > 0, we then have

d(&s,&g) = lim d(f" (x),g" (x))
< Ed(f"(x),f”an(x)) +}i7n30d(g"(x),g"bn(x))
< im & (5(0 (x,an(x)))) + lim o (5(Og (x, b (x)))) 2.17)
srlliqingo(x” (sup{é(of(x,h(x))):hes})

+Ea” (sup{é(og(x,h(x))) the S}) =0,

which shows that §f = . O
The following two examples show some differences between Theorems 2.1 and 2.2.

EXAMPLE 2.3. Let f,g,M,S, and @ be just as in Example 2.1. In contrast to the
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fact that d(h(x),h(y)) < @(5(0O(x,y))) for any h in S and x,y in M, we have, for
x=0and y >0,d(f(x),f(y)) =2/3y and 6(Or(x,y)) = y and so, we do not have
d(f(x), f(¥)) <@(8(0r(x,¥))).

EXAMPLE 2.4. Forany n € N, let f,, :[0,1] — [0,11]:

1

—X, if x is rational,

Sax)=1n+1 (2.18)
0, if x is irrational ,

and put S = {f;, : m € N}. Then S is a commutative semigroup under composition and
each member in S is discontinuous. Also, for any n € N and x,y in [0, 1],

A(fn(x), fn(¥) < 36(04, (x,)). (2.19)

So,ifweput @ :[0,00) —[0,00) : @(t) = 1/2t, then d(fn(x), fn () <P (5(Oyf, (x,¥))).
In this case, 0 is the unique common fixed point of S.

3. Fixed point theorems for Lipschitzian mappings. A nonempty family ¥ of sub-
sets of a metric space (M, d) is said to define a convexity structure on M if it is stable
under intersection. A subset of M is said to be admissible if it is an intersection of
closed balls. We denote, by (M), the family of all admissible subsets of M. Obviously,
A(M) defines a convexity structure on M. For » > 0 and x in M and a bounded subset
D of M, we adopt the following notations

B(x,7) is the closed ball with center x and radius 7, 3.1)
v(x,D) =supi{d(x,y):y € D}, (3.2)
0(D) =sup{r(x,D):x € D} = the diameter of D, (3.3)

R(D) =inf{r(x,D) : x € D} = the Chebyshev radius of D relative to D.  (3.4)

Following Khamsi [7], a metric space (M, d) is said to have a uniform normal struc-
ture if there exist a convexity structure % on M and a constant ¢ € (0,1) such that
R(D) < c6(D) for any bounded subset D in & with 6(D) > 0. We also say that & is
uniformly normal. The uniform normal structure coefficient N (M) of M relative to &
is the number sup {R(D)/8(D) : D € ¥ is bounded and §(D) > 0}.

A metric space (M,d) is said to be hyperconvex if any family {B(x«,7«)} of closed
balls in M satisfying d(x«,Xpg) < 7« +¥g has nonempty intersection.

The following results are well known, (cf. Goebel and Kirk [4] and Kirk [8]).

LEMMA 3.1. Suppose that (M,d) is a hyperconvex metric space. Then
(i) M is complete,
(ii) A(M) is a uniformly normal convexity structure such that the uniform normal
structure coefficient N(M) of M relative to it is 1/2,
(iii) for any subfamily ¥ of «i(M) which has the finite intersection property, one has
mAesiA + .

For a bounded subset D of M, the admissible hull of D, denoted by ad(D), is the set

(){B:B € si(M) and D < B}. (3.5)
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The following definition is a net version of [10, Def. 5].

DEFINITION 3.1. A metric space (M,d) is said to have the property (P) if given
any two bounded nets {x;};c; and {z;};c, one can find some z € N;c;ad{z;:j = i}
such that lim;e;d(z,x;) < limjes limie;d(zj,x;), where lim;e;d(z,x;) is defined to be
infgersup;.gd(z,x;).

Using property (iii) in Lemma 3.1 to conclude that ();c; A; = ¢ for any decreasing
net {A;};c; of admissible subsets of M, the proof for Lemma 3.2 below is the same as
that in Lim and Xu [10].

LEMMA 3.2. Let (M,d) be a bounded hyperconvex metric space with property (P).
Then, for any net {x;}ic; in M and any constant ¢ > 1/2, there exists a point z in M
satisfying

(i) limierd(z,x;) < c6({xi}icr), and
(ii) d(z,y) <limje;d(x;,y) forall y in X.

Let S be a left reversible semigroup. For a,b in S, we say that a > b if a € bS U {b}.
Then (S,>) is a directed set. In what follows in this section, we deal only with this
order.

LEMMA 3.3. Let S be a left reversible semigroup acting on a metric space (M,d).
Then, for x,y in M, one has lim;csd (x,ty) = infses sup;cg d(x,sty).

PROOE. By definition, limscsd(x,ty) = infscssup,.,d(x,ty). Since, for any s in
S, sup,s,d(x,ry) = sup;csd(x,sty), we see that infsessup,.,d(x,ry) = infes X
sup;esd(x,sty), that is limgesd(x,ty) = infscg sup;esd(x,sty). On the other hand,
if a € § then, for any s € S, we have sup;.,,d(x,ty) < sup;csd(x,sty) and so,
infpegsup;s, d(x,ty) < sup;esd(x,sty) for any s € S. Therefore, lim;esd(x,ty) <
infses sup;cs d(x,sty). O

To prove our main result in this section, we need the following lemma.

LEMMA 3.4. LetS be a left reversible semigroup acting on a metric space (M,d) and
let x,y be two points in M. Then, for any a € S, one has

limd(x,aty) =limd(x,ty). (3.6)
tes tes

PROOF. By Lemma 3.3, lim;csd(x,aty) = infscssup;cs d(x,saty). But, since

1r61£st161£)d(x,saty) > irelgstlelg)d(x,sty) = tlergld(x,ty), (3.7)

we get lim;esd(x,aty) = limyesd(x,ty). On the other hand, if s € S, then, for any r
in sSnas$, we have

supd(x,sty) = supd(x,rty). (3.8)
tes tes
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Hence, sup;csd(x,sty) > infyessup;esd(x,auty) for any s € S. Consequently,
letting s vary over S, we obtain that

limd(x,ty) = inf supd(x,sty)
tes SES teS

> %Lrégstlé?d(x,auty) (3.9)
=limd(x,aty). O
tes

DEFINITION 3.2. A semigroup S acting on a metric space (M,d) is said to be a
uniformly k-Lipschitzian semigroup if

d(sx,sy) <kd(x,y) (3.10)

for all sin S and all x,y in M.

If S is a left reversible semigroup, then (S,>) is a totally ordered set if any x,y
in S satisfy either x <y or v < x. For example, if 7 = {T; : s € [0, )} is a family of
selfmaps on R such that T, (x) = Ts Ty (x) for all s,h in [0, ) and x € R, then (7, >)
is a totally ordered left reversible semigroup.

We are now in a position to prove our main result in this section.

THEOREM 3.1. Let (M,d) be a bounded hyperconvex metric space with property (P)
and let S be a left reversible uniformly k-Lipschitzian semigroup of selfmaps on M such
that k < +/2 and (S, =) is a totally ordered set. Then S has a common fixed point € in M.

PROOF. Choose a constant ¢ such that 1/2 < ¢ <1 and k < 1/./c. Let xo be any
point in M. For t in S, denote xg by xo,. Then {xo}:es is a net in M. By Lemma 3.2,
we can inductively construct a sequence {x;} in M such that, for each j € Nu {0},

(@) limesd(xjs1,x5) < c8(Sx;), and

(b) d(xj+1,y) <limesd(xj,y) forall y in M.

Write D; = limiesd(xj+1,Xj¢) and h = ck? < 1. For s,t € S with s > t, we have
d(sxj,tx;) = 0if s = t, and d(sxj,tx;) = d(taxj,tx;) if s = ta for some a € S.
Then

d(taxj,tx;) < kd(axj,xj)
< k@d(xj,l,t,axj) bY (b)

=kinf sup d(stxj_i,ax;) byLemma 3.3
SES tes

= kinf sup d(astxj_i,ax;) byLemma 3.4
ses tesS

(3.11)

< k*inf sup d(stx;_1,x;)
SES tes

=k’D;_;.

Taking supremum for s,t over S and noting that (S,>) is a totally ordered set, we
then obtain that

5(Sx;) <k’Dj_1. (3.12)
Hence,

Dj<c5(Sxj) <ck’Dj_y =hDj_; < --- <h/D,. (3.13)
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Therefore, for any j e NU{0} and any t € S,

d(xjw1,x;) <d(xje1,x5) +d (X, x5)

IA

Xj+1,Xjt +hmd(x1 lraxjt) by (b)

SES yes

(3.14)

Xj+1,Xj,) +inf supd(tsrxj-1,tx;) by Lemma 3.4
SES yes

Xj+1,Xj) +kinf sup d(srx;_1,x;)
SES yes

d( )
d( )
= d(xj41,%;¢) +inf sup d(s7x;1, ;)
=d( )
<d( )
)

d(xj+laxjf +kDJ 1s
which implies that
d(Xj_,_l,Xj) < @d(xjﬂ,xj,t) +ij_1
=Dj+ij71 (3.15)

< (h/+kh/~Y)D

Since h € (0,1), we conclude that {x;} is a Cauchy sequence in M. By Lemma 3.1, M
is complete. Thus, there is § in M such that lim;_. x; = &.
Finally, we show that & is a common fixed point of S. For any ¢ in S,

A(&,t8) < d(&,xj+1) +d(xjr1,x)) +d(xjr,LE)
=d(& xjs1) +Ad(xje, %)) +kd(x},8)
<d(xjs1,8) + 1md(xJTstt)+kd(X_]=§)
=d(xj:1,&) +kd(x;,& )+11rr§;d(trxj,txj) by Lemma 3.4 (3.16)
re
<d(xj41,8) +kd(x;,& )+k@d(rxj,xj)
re
<d(xji1,8) +kd(x;, & )+k%%d(xj_l,a,rxj) by (b) .
But,
limd(x;_14,7x;) =limd(rax;_1,rx;) by Lemma 3.4
aes aes
< k}ligd(axj—hxj)
<kecd(Sxj-1) by (@) (3.17)

<kck’D;_, by (3.12)

= k”LDj_z <---= khjleo.
So, d(&,tE) < d(xj:1,8) + kd(x;,&) + k*hi~1 Dy, which shows that t€ = € once we let
j— oo. O
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