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Abstract. The aim of this paper is to study the class of θ-generalized closed sets, which is
properly placed between the classes of generalized closed and θ-closed sets. Furthermore,
generalized Λ-sets [16] are extended to θ-generalized Λ-sets and R0-, T1/2- and T1-spaces
are characterized. The relations with other notions directly or indirectly connected with
generalized closed sets are investigated. The notion of TGO-connectedness is introduced.
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1. Introduction. The first step of generalizing closed sets was done by Levine in
1970 [15]. He defined a set A to be generalized closed if its closure belongs to every
open superset of A and introduced the notion of T1/2-spaces, which is properly placed
between T0-spaces and T1-spaces. Dunham [10] proved that a topological space is T1/2
if and only if every singleton is open or closed. In [13], Khalimsky, Kopperman, and
Meyer proved that the digital line is a typical example of a T1/2-space.
Ever since, general topologists extended the study of generalized closed sets on

the basis of generalized open sets: regular open, α-open [20], semi-open [14], semi-
preopen [1], preopen [19], θ-open [26], δ-open [26], etc.
Extensive research on generalizing closedness was done in recent years as the no-

tions of semi-generalized closed, generalized semi-closed, generalized α-closed, α-
generalized closed, generalized semi-preclosed, regular generalized closed, γ-g-closed
and (γ,γ′)-g-closed sets were investigated [2, 3, 6, 7, 11, 18, 17, 22, 23, 24, 25].
Recently, in [8], Ganster and the first author of this paper defined δ-generalized

closed sets and introduced the notion of T3/4-spaces, which is properly placed between
T1-spaces and T1/2-spaces. They proved that the digital line is T3/4.
The aim of this paper is to continue the study of generalized closed sets, this time

via the θ-closure operator defined in [26] and characterize T1/2-spaces and T1-spaces
in terms of θ-generalized closed sets. Via θ-closure operator, we extend the class of
generalized Λ-sets to the class of θ-generalized Λ-sets and study some new charac-
terizations of R0-spaces and T1-spaces.

2. Preliminaries concerning generalized closed sets. Throughout this paper, we
consider spaces on which no separation axioms are assumed unless explicitly stated.
The topology of a given space X is denoted by τ and (X,τ) is replaced by X if there
is no chance for confusion. For A ⊆ X, the closure and the interior of A in X are
denoted by Cl(A) and Int(A), respectively. Sometimes, when there is no chance for
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confusion, A stands for Cl(A). The θ-interior [26] of a subset A of X is the union of
all open sets of X whose closures are contained in A, and is denoted by Intθ(A). The
subset A is called θ-open [26] if A= Intθ(A). The complement of a θ-open set is called
θ-closed. Alternatively, a set A ⊂ (X,τ) is called θ-closed [26] if A = Clθ(A), where
Clθ(A)= {x ∈ X : U∩A≠∅,U ∈ τ and x ∈ U}. The family of all θ-open sets forms a
topology on X and is denoted by τθ . We use the name CO-set for sets whose closure
is open.

Observation 2.1. (i) If A is preopen, then Clα(A)= Cl(A)= Clθ(A).
(ii) Every CO-set is preopen.
(iii) Every dense subset is a CO-set.
(iv) Every subset of a space (X,τ) is a CO-set if and only if (X,τ) is locally indiscrete.

Definition 1. A subset A of a space (X,τ) is called
(1) a generalized closed set (= g-closed) [15] if A⊆U and U ∈ τ implies that A⊆U ,
(2) a semi-generalized closed set (= sg-closed) [4] ifA⊆U andU is semi-open implies

that SCl(A)⊆U ,
(3) a generalized α-closed set (=gα-closed) [17] if A ⊆ U and U is α-open implies

that Clα(A)⊂U ,
(4) a generalized semi-closed set (= gs-closed) [2] if A ⊆ U and U ∈ τ implies that

sCl(A)⊆U ,
(5) an α-generalized closed set (= α g-closed) [18] if A ⊆ U and U ∈ τ implies that

Clα(A)⊂U ,
(6) a generalized semi-preclosed set (= gsp-closed) [7] if A ⊆ U and U ∈ τ implies

that spCl(A)⊆U ,
(7) a regular generalized closed set (= r-g-closed) [23] if A⊆U and U is regular open

implies that Ā⊆U .

Definition 2. A topological space (X,τ) is called
(1) R0-space [5] if the closures of every two different points are either disjoint or

coincide,
(2) R1-space [5] if every two different points, with distinct closures, have disjoint

neighborhoods,
(3) T1/2-space [15] if every g-closed set is closed, (= every singleton is open or closed

[10]),
(4) kc-space [27] if every compact set is closed.

Definition 3. Recall that a function f : (X,τ)→ (Y ,σ) is called
(1) g-continuous [3] if f−1(V) is g-closed in (X,τ) for every closed set V of (Y ,σ),
(2) semi-continuous [14] if f−1(V) is semi-open in (X,τ) for every open set V of

(Y ,σ),
(3) strongly θ-continuous [21] if, for each x ∈ X and each open set V containing

f(x), there exists an open set U containing x such that f(U)⊆ V .

3. Basic properties of θ-generalized closed sets

Definition 4. A subset A of a topological space (X,τ) is called θ-generalized
closed (= θ-g-closed) if Clθ(A)⊆U , whenever A⊆U and U is open in (X,τ).
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We denote the family of all θ-generalized closed subsets of a space (X,τ) by
TGC(X,τ).
The next two results together with the examples following them show that the class

of θ-generalized closed sets is properly placed between the classes of g-closed and
θ-closed sets.

Observation 3.1. Every θ-closed set is θ-generalized closed.

Example 3.2. Let X = {a,b,c} and let τ = {∅,{a,b},X}. Set A = {a,c}. Since the
only open superset of A is X, A is clearly θ-generalized closed. But it is easy to see
that A is not θ-closed. In fact, it is not even semi-closed since its complement {b} has
empty interior.

Observation 3.3. Every θ-generalized closed set is g-closed and hence α g-closed,
gs-closed, and r-g-closed.

Example 3.4. Let X = {a,b,c} and let τ = {∅,{a},{a,b},{a,c},X}. Set A = {c}.
Clearly, A is closed and hence g-closed. Next, set U = {a,c}. Note that X = Clθ(A) �⊆
U ∈ τ . Thus, A is not θ-generalized closed.

The following diagram is an enlargement of a Diagram from [7].

θ-closed

��

�� θ-g-closed

�� ��������������

closed set

��

�� g-closed set

���������������������������

��������������

��������������
�� αg-closed

��

����
��

��
��

��
��

��
��

��
�

α-closed set

��

�� gα-closed set

��������������
gs-closed set

�������������� r-g-closed

semi-closed set

��

�� sg-closed set

��������������
�� gsp-closed set

semi-preclosed set

������������������������������������������

Observation 3.5. Let (X,τ) be a regular space (not necessarily even T0). Then a
subset A of X is θ-generalized closed if and only if A is generalized closed.

Lemma 3.6 [12, Thm. 3.1(d), Thm. 3.6(d)]. For a space (X,τ), the following condi-
tions are equivalent
(1) X is an R1-space;
(2) for each x ∈X, Cl{x} = Clθ{x};
(3) for each compact set A⊆X, Cl(A)= Clθ(A).
Proposition 3.7. If (X,τ) is R1, then a compact subset K of X is g-closed if and

only if K is θ-g-closed.

Proposition 3.8. Let A be a preopen subset of a topological space (X,τ). Then the
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following conditions are equivalent
(1) A is θ-g-closed;
(2) A is g-closed;
(3) A is αg-closed.

Proof. Follows easily from Observation 2.1(i) (note that a preopen g-closed set is
a CO-set).

Lemma 3.9. If A and B are subsets of a topological space (X,τ), then Clθ(A∪B) =
Clθ(A)∪Clθ(B) and Clθ(A∩B)⊆ Clθ(A)∩Clθ(B).
Proposition 3.10. (i) A finite union of θ-g-closed sets is always a θ-g-closed set.
(ii) A countable union of θ-g-closed sets need not be a θ-g-closed set.
(iii) A finite intersection of θ-g-closed sets may fail to be a θ-g-closed set.

Proof. (i) LetA,B ∈ TGC(X). LetU ∈ τ such thatA∪B ⊆U . By Lemma 3.9, Clθ(A∪
B) = Clθ(A)∪Clθ(B) ⊆ U ∪U = U since A and B are θ-g-closed. Hence, A∪B is θ-g-
closed.
(ii) Let X be the real line with the usual topology. Since X is regular, by Observation

3.5, every singleton in X is θ-g-closed. Set A = ⋃∞i=2{1/i}. Clearly, A is a countable
union of θ-generalized closed sets but A is not θ-generalized closed since A ⊆ (0,1)
and 0∈ Clθ(A).
(iii) Let X = {a,b,c,d,e} and let τ = {∅,{a,b},{c},{a,b,c},X}. Set A = {a,c,d}

and B = {b,c,e}. Clearly, A and B are θ-generalized closed sets since X is their only
open superset. But C = {c} =A∩B is not θ-generalized closed since C ⊆ {c} ∈ τ and
Clθ(C)= {c,d,e} �⊆ {c}.
Proposition 3.11. The intersection of a θ-generalized closed set and a θ-closed set

is always θ-generalized closed.

Proof. Let A be θ-generalized closed and let F be θ-closed. Let U be an open set
such that A∩F ⊆ U . Set G = X\F . Then A ⊆ U ∪G. Since G is θ-open, U ∪G is open
and since A is θ-generalized closed, Clθ(A)⊆U∪G. Now, by Lemma 3.9, Clθ(A∩F)⊆
Clθ(A)∩Clθ(F)= Clθ(A)∩F ⊆ (U∪G)∩F = (U∩F)∪(G∩F)= (U∩F)∪∅⊆U .

Proposition 3.12. Let B ⊆ H ⊆ (X,τ) and (Clθ)H(B) denote the θ-closure of B in
the subspace (H,τ |H). Then
(i) (Clθ)H(B)⊆ Clθ(B)∩H holds.
(ii) If H is open in (X,τ), then (Clθ)H(B)⊃ Clθ(B)∩H holds.

Theorem 3.13. Let B ⊆H ⊆ (X,τ).
(i) If B is θ-g-closed relative to H (i.e., B ∈ TGC(H,τ |H)), H ∈ TGC(X), and H ∈ τ ,

then B ∈ TGC(X).
(ii) If B is θ-g-closed in (X,τ), then B is θ-g-closed relative to H (i.e., B ∈ TGC(H,τ |

H)).

Proof. (i) Let B ⊆ U , where U ∈ τ . Then B ⊆ H ∩U and, moreover, (Clθ)H(B) ⊆
H∩U due to assumption. By Proposition 3.12(ii), H∩Clθ(B) ⊆ H∩U ⊆ U . Using the
last inclusion, it follows that H ⊆ H∪(X\Clθ(B)) = (H∩Clθ(B))∪(X\Clθ(B)) ⊆ U∪
(X\Clθ(B)). Since Clθ(B) is a closed set, U∪(X\Clθ(B)) is open and thus since H ∈
TGC(X), Clθ(H)⊆U∪(X\Clθ(B)). Now, Clθ(B)⊆ Clθ(H)⊆U∪(X\Clθ(B)). From the
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last inclusion, it follows that Clθ(B)⊆U or, equivalently, B ∈ TGC(X).
(ii) Let V be an open set of (H,τ | H) such that B ⊂ V . Then there exists an open

set G ∈ τ such that G∩H = V . Since B ⊆ G∩H ⊆ G and B ∈ TGC(X), Clθ(B) ⊆ G.
By Proposition 3.12(i), (Clθ)H(B)⊆ Clθ(B)∩H ⊆G∩H ⊆ V . Therefore, B is θ-g-closed
relative to H.

Example 3.14. LetX = {a,b,c,d} and τ = {∅,{a},{a,b},{a,c,d},X}. Then {∅,X}
is the set of all θ-closed sets of (X,τ) and TGC(X,τ) = {∅,{b,c},{b,d},{b,c,d},
{a,b,d},{a,b,c},X}. Let H = {b,c,d} be a set of X. Then, τ |H = {∅,{b},{c,d},H}.
Note that {∅,{b},{c,d},H} is the set of all θ-closed sets of (H,τ |H) and TGC(H,τ |
H)=�(H). The subset {b} ofH is θ-g-closed relative toH andH is not open (i.e.,{b} ∈
TGC(H,τ |H), H �∈ τ) and H ∈ TGC(X,τ). However, {b} �∈ TGC(X,τ).
Example 3.15. Let (X,τ) be the space in the example above. Set H = {a,c,d}.

Clearly, H is open in (X,τ) and H is not θ-generalized closed in (X,τ). But B = {a,c}
is θ-generalized closed relative to H. However, B is not θ-generalized closed in (X,τ).

4. Characterizations of T1/2-spaces, T1-spaces and R0-spaces

Theorem 4.1. A space (X,τ) is a T1/2-space if and only if every θ-generalized closed
set is closed.

Proof.

Necessity. Let A ⊆ X be θ-generalized closed. By Observation 3.3, A is g-closed.
Since X is a T1/2-space, A is closed.
Sufficiency. Let x ∈X. If {x} is not closed, then B =X\{x} is not open and thus

the only superset of B is X. Trivially, B is θ-generalized closed. By (2), B is closed or,
equivalently, {x} is open. Thus, every singleton in X is open or closed. Hence, in the
notion of [6, Thm. 6.2(i)], X is a T1/2-space.

Lemma 4.2. Let A⊆ (X,τ) be θ-generalized closed. Then Clθ(A)\A does not contain
a nonempty closed set.

Theorem 4.3. A space (X,τ) is a T1-space if and only if every θ-generalized closed
set is θ-closed.

Proof.

Necessity. Let A ⊆ X be θ-generalized closed and let x ∈ Clθ(A). Since X is T1,
{x} is closed and thus by Lemma 4.2, x �∈ Clθ(A)\A. Since x ∈ Clθ(A), then x ∈ A.
This shows that Clθ(A)⊆A or, equivalently, that A is θ-closed.
Sufficiency. Let x ∈ X. Assume that {x} is not closed. Then B = X\{x} is not

open and, trivially, B is θ-generalized closed since the only open superset of B is X
itself. By (2), B is θ-closed and thus {x} is θ-open. Since a singleton is θ-open if and
only if it is clopen, {x} is clopen.
The notion of a Λ-set and a generalized Λ-set in a topological space was introduced

in [16]. By definition, a subset A of a topological space (X,τ) is called a Λ-set [16] if
A=AΛ, whereAΛ =∩{U :U ⊃A,U ∈ τ}. Recall thatA is called a generalizedΛ-set [16]
if AΛ ⊆ F , whenever A⊆ F and F is τ-closed.
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Definition 5. (i) For a subset A of (X,τ), we define AΛθ as follows

AΛθ =
{
x ∈X : Clθ{x}∩A �= ∅

}
.

In [12], AΛθ is denoted by kerθ A.
(ii) A subsetA of (X,τ) is called θ-generalizedΛ-set (= θ-g-Λ-set) ifAΛθ ⊆ F , whenever

A⊆ F and F is closed in (X,τ).

Observation 4.4. (i) Every Gδ-set is a Λ-set.
(ii) [12, Lem. 3.5(a)]. For any set A⊆X, A⊆AΛ ⊆AΛθ ⊆ Clθ(A).
(iii) Every θ-closed set is a Λ-set.
(iv) Every g-closed Λ-set is closed.
(v) Every θ-generalized Λ-set is a generalized Λ-set.

Remark 4.5. (i) A Λ-set need not be θ-closed. Any singleton of an infinite space
with the cofinite topology is a Λ-set (since the space is T1) but none of the singletons
is θ-closed.
(ii) A closed set need not be aΛ-set. In the Sierpinski space (X = {a,b},τ = {∅,{a},

X}), the set B = {b} is closed but B is not a Λ-set. However, in [16, Prop. 3.8], it was
shown that in a topological space (X,τ), every subset of X is a generalized Λ-set if
and only if every closed set is a Λ-set.
(iii) A generalizedΛ-set need not be θ-generalizedΛ-set. In an infinite cofinite space

X, as mentioned in Remark 4.5, every singleton is a Λ-set and, hence, a generalized
Λ-set but none of the singletons is a θ-generalized Λ-set since the θ-closure of every
singleton is X.

In [16], it was proved that in T1-spaces, every set is a Λ-set. Note that the converse
is also true.

Proposition 4.6. (i) A topological space (X,τ) is a T1-space if and only if every
subset of X is a Λ-set.
(ii) A topological space (X,τ) is an R0-space if and only if every singleton of X is a

generalized Λ-set.

Proof. (i) Obvious.
(ii) In [9], Dube showed that a space is R0 if and only if, for each closed set A,

A= AΛ. Thus, if X is R0, then for each singleton {x} and each closed set F containing
x, we have {x} ⊆ {x}Λ ⊆ FΛ = F . So, {x} is a generalized Λ-set. For the reverse assume
that F ⊆X is closed. For each x ∈ F , by assumption, {x}Λ ⊆ F . Thus, FΛ =∪x∈F{x}Λ ⊆
F according to [16, condition (2.5)]. This shows that F = FΛ.

Observation 4.7. (i) A subset A of an R1-space X is generalized Λ-set if and only
if A is θ-generalized Λ-set.
(ii) In Hausdorff spaces, every subset is a θ-generalized Λ-set.
(iii) A topological space X is Hausdorff if and only if X is a kc-space and every closed

set of X is a θ-generalized Λ-set.

5. θ-g-continuous and θ-g-irresolute functions

Definition 6. A function f : (X,τ)→ (Y ,σ) is called
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(1) θ-g-continuous if f−1(V) is θ-g-closed in (X,τ) for every closed set V of (Y ,σ),
(2) θ-g-irresolute if f−1(V) isθ-g-closed in (X,τ) for everyθ-g-closed setV of (Y ,σ).

Observation 5.1. If f : (X,τ) → (Y ,σ) is strongly θ-continuous, then f is θ-g-
continuous.

Example 5.2. Let (X,τ) be the space in Example 3.2. Let σ = {∅,{b},X}. Let f :
(X,τ) → (X,σ) be the identity function. Clearly, in the notion of Example 3.2, f is
θ-g-continuous but f is not strongly θ-continuous, not even semi-continuous.

Observation 5.3. Let f : (X,τ)→ (Y ,σ) be θ-g-continuous. Then f is g-continuous
but not conversely.

Example 5.4. Let (X,τ) be the space in Example 3.4. Let σ = {∅,{a,b},X}. Let
f : (X,τ) → (X,σ) be the identity function. Clearly, f is continuous and hence g-
continuous but as shown in Example 3.4, A = {c} �∈ TGC(X,τ) and hence f is not
θ-g-continuous.

Example 5.2 and Example 5.4 also show that continuity and θ-g-continuity are in-
dependent concepts. Thus, we have the following implications and none of them is
reversible.

θ-g-continuous

���������������

Strongly θ-continuous

�����������������

		��������������� g-continuous

continuous

��													

Example 5.5. Let f be the function in Example 5.2. Let ν = {∅,{c},X}. Let
g : (X,σ) → (X,ν) be the identity function. It is easily observed that g is also θ-
generalized continuous. But the composition function g ◦ f : (X,τ) → (X,ν) is not
θ-generalized continuous since {a,b} �∈ TGC(X,τ).
Theorem 5.6. If f : (X,τ)→ (Y ,σ) is bijective, open and θ-generalized continuous,

then f is θ-g-irresolute.

Proof. Let V ∈ TGC(Y) and let f−1(V)⊆O, where O ∈ τ . Clearly, V ⊆ f(O). Since
f(O) ∈ σ and since V ∈ TGC(Y), Clθ(V) ⊆ f(O) and thus f−1(Clθ(V)) ⊂ O. Since f
is θ-generalized continuous and since Clθ(V) is closed in Y , Clθ(f−1(Clθ(V))) ⊆ O
and hence Clθ(f−1(V))⊆O. Therefore, f−1(V)∈ TGC(X). Hence, f is θ-g-irresolute.

Definition 7. A function f : (X,τ)→ (Y ,σ) is called θ-generalized closed if, for
every closed set F of (X,τ), f(F) is θ-g-closed in (Y ,σ).

Theorem 5.7. (i) Let f : (X,τ)→ (Y ,σ) be continuous and θ-generalized closed.
Then, for a θ-g-closed set A of X , f(A) is θ-g-closed in Y .
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(ii) Let f : (X,τ) → (Y ,σ) be strongly θ-continuous and closed. Then, f is θ-g-
irresolute.

Proof. (i) Left to the reader.
(ii) Let B be a θ-g-closed set of (Y ,σ) and let U ∈ τ such that f−1(B) ⊆ U . Put

H = Clθ(f−1(B))∩ (X\U). A map f : (X,τ) → (Y ,σ) is strongly θ-continuous if and
only if f : (X,τ) → (Y ,σ) is (γ, id)-continuous in the sense of Ogata [22, Def. 4.12],
where γ : τ → �(X) is the closure operation and id : σ → �(Y) is the identity op-
eration. Using [22, Prop. 4.13(i)] and the fact that Clγ(E) = Clθ(E) and Clid(E) =
Cl(E) for the closure operation γ, the identity operation id and the subset E, we get
f(H) ⊆ f(Clθ(f−1(B)))∩f(X\B) ⊆ Cl(f (f−1(B)))∩ (X\B) ⊆ Cl(B)\B ⊂ Clθ(B)\B. By
Lemma 4.2, f(H)=∅ since f(H) is closed. We have H =∅ and hence Clθ(f−1(B))⊆
U . Therefore, f−1(B)∈ TGC(X,τ).
Corollary 5.8. (i) Under the same assumptions of Theorem 5.6, if (X,τ) is T1/2,

then (Y ,σ) is T1/2.
(ii) Under the same assumptions of Theorem 5.7(ii), if (X,τ) is T1/2 and f : (X,τ)→

(Y ,σ) is surjective, then (Y ,σ) is T1/2.

Proposition 5.9. Let f : (X,τ) → (Y ,σ) be a θ-generalized continuous function
and let H be a θ-closed subset of X. Then the restriction f | H : (H,τ | H)→ (Y ,σ) is
θ-generalized continuous.

Proof. Let F be a closed subset of (Y ,σ). By Proposition 3.11, H1 = f−1(F)∩H is
θ-generalized closed in (X,τ). Then, by Theorem 3.13(ii),H1 is θ-g-closed in (H,τ |H).
Since (f |H)−1(F)=H1, f |H is θ-g-continuous.

Next, we offer the following “Pasting Lemma” for θ-g-continuous functions.

Proposition 5.10. Let (X,τ) be a topological space such that X = A∪B, where
both A,B ∈ TGC(X) and A,B ∈ τ . Let f : (A,τ | A)→ (Y ,σ) and g : (B,τ | B)→ (Y ,σ)
be θ-generalized continuous functions such that f(x)= g(x) for every x ∈A∩B. Then
the combination α : (X,τ) → (Y ,σ) is θ-generalized continuous, where α(x) = f(x)
for any x ∈A and α(y)= g(y) for any y ∈ B.

Definition 8. A subset A of (X,τ) is called θ-generalized open (= θ-g-open) if its
complement X\A is θ-generalized closed in (X,τ).
Theorem 5.11. (i) A subset A of (X,τ) is θ-g-open if and only if F ⊆ Intθ(A),

whenever F ⊂A and F is closed in (X,τ).
(ii) If A is θ-g-open in (X,τ) and B is θ-g-open in (Y ,σ), then A×B is θ-g-open in

the product space (X×Y , τ×σ).
Proof. (i) Obvious.
(ii) Let F be a closed subset of (X×Y ,τ×σ) such that F ⊆A×B. For each (x,y)∈

F , Cl({x})× Cl({y}) ⊆ Cl(F) = F ⊆ A× B. Then the two closed sets Cl({x}) and
Cl({y}) are contained in A and B, respectively. By assumption, Cl({x}) ⊆ Intθ(A)
and Cl({y}) ⊆ Intθ(B) hold. This implies that, for each (x,y) ∈ F , (x,y) ∈ Intθ(A)×
Intθ(B)⊆ Intθ(A×B) and hence F ⊂ Intθ(A×B). By (i) it is clear that A×B is θ-g-open.
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Proposition 5.12. The projection p : (X × Y ,τ ×σ) → (X,τ) is a θ-g-irresolute
map.

Proof. By definition and Theorem 5.11(ii), for a θ-generalized closed set F of
(X,τ), p−1(x\F)= (X\F)×Y is θ-g-open in (X×Y ,τ×σ). Therefore, P−1(F)= F×Y =
X×Y\(p−1(X\F)) is θ-generalized closed.

6. TGO-connected spaces. In 1991, Balachandran et al. [3] introduced a stronger
form of connectedness called GO-connectedness. A set is called g-open [15] if its com-
plement is g-closed.

Definition 9. (cf. [15]). A topological space X is called TGO-connected (respec-
tively, GO-connected [15]) if X cannot be written as a disjoint union of two nonempty
θ-g-open (respectively, g-open) sets. A subset of X is called TGO-connected if it is
connected as a subspace.

Clearly, every TGO-connected space is connected. The space in [3, Ex. 11] shows that
there are connected spaces which are not TGO-connected. Since every θ-generalized
closed set is g-closed, every GO-connected space is TGO-connected. Thus, we have the
following implications and none of them is reversible.

GO-connected �⇒ TGO-connected �⇒ Connected

Example 6.1. Let X = {a,b,c,d} and let τ = {∅,{a},{a,b},{a,c,d},X}. Since {c}
is both g-closed and g-open, X is not GO-connected. Note that TGC(X) = {∅,{b,c},
{b,d},{a,b,c},{a,b,d},{b,c,d},X}. Hence, X is TGO-connected.
Observation 6.2. (i) [3, Prop. 10]. For a topological space (X,τ), the following
conditions are equivalent.
(1) X is TGO-connected;
(2) the only subsets of X, which are both θ-g-open and θ-g-closed, are ∅ and X;
(3) each θ-generalized continuous function of X into a discrete space Y , with at

least two points, is constant.
(ii) [3, Prop. 12]. If (X,τ) is a T1/2-space, then the following conditions are equivalent
(1) X is GO-connected;
(2) X is TGO-connected;
(3) X is connected.

(iii) A regular space X is GO-connected if and only if X is TGO-connected.
(iv) Let f : (X,τ)→ (Y ,σ) be a surjection. Then

(a) If f is θ-generalized continuous and X is TGO-connected, then Y is connected.
(b) If f is θ-g-irresolute and X is TGO-connected, then Y is TGO-connected.

Corollary 6.3. If the product space (X×Y ,τ×σ) is TGO-connected, then its factor
space (X,τ) is TGO-connected.

Theorem 6.4. Let f : (X,τ) → (Y ,σ) be θ-g-continuous. Then the image of every
θ-closed, TGO-connected subset of (X,τ) is connected in (Y ,σ).
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Proof. Let H be a θ-closed and TGO-connected set in (X,τ). Then, by Proposition
5.9, the restriction of f to H, f | H : (H,τ | H) → (Y ,σ), is θ-g-continuous. For f ,
a function rH(f) : (H,τ |H)→ (f (H),σ | f(H)) is well defined by (rH(f))(x)= f(x)
for any x ∈ H. Since f | H = j ◦ rH(f), where j : (f (H),τ | f(H)) → (Y ,σ) is an
inclusion. Then it is clear that rH(f) is θ-g-continuous. In fact, for an open set V of
(f (H),σ | f(H)), take an open set G ∈ τ such that G∩f(H)= V . Then rH(f)−1(V)=
(f |H)−1(G) is θ-g-open. Now, by Observation 6.2(iv), (f (H),σ | f(H)) is connected
and hence f(H) is a connected subset of (Y ,σ).
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[26] N. V. Velĭcko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103–118.
Zbl 183.27302.

[27] A. Wilansky, Between T1 and T2, Amer. Math. Monthly 74 (1967), 261–266. MR 34#8367.
Zbl 147.22704.

Dontchev: DepartmentofMathematics, PL 4, Yliopistonkatu 5, University ofHelsinki,
00014 Helsinki 10, Finland

Maki: Department of Mathematics, Faculty of Education, Saga University, Saga 840,
Japan

http://www.emis.de/cgi-bin/MATH-item?888.54005
http://www.ams.org/mathscinet-getitem?mr=95c:54037
http://www.emis.de/cgi-bin/MATH-item?821.54002
http://www.ams.org/mathscinet-getitem?mr=87c:54002
http://www.emis.de/cgi-bin/MATH-item?571.54011
http://www.ams.org/mathscinet-getitem?mr=33:3245
http://www.emis.de/cgi-bin/MATH-item?137.41903
http://www.ams.org/mathscinet-getitem?mr=82b:54020
http://www.emis.de/cgi-bin/MATH-item?435.54010
http://www.ams.org/mathscinet-getitem?mr=92c:54004
http://www.emis.de/cgi-bin/MATH-item?725.54004
http://www.ams.org/mathscinet-getitem?mr=94k:54018
http://www.emis.de/cgi-bin/MATH-item?794.54002
http://www.ams.org/mathscinet-getitem?mr=92j:54032c
http://www.emis.de/cgi-bin/MATH-item?790.54010
http://www.ams.org/mathscinet-getitem?mr=93b:54020
http://www.emis.de/cgi-bin/MATH-item?751.54010
http://www.emis.de/cgi-bin/MATH-item?183.27302
http://www.ams.org/mathscinet-getitem?mr=34:8367
http://www.emis.de/cgi-bin/MATH-item?147.22704

