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Abstract. We construct two countable, biconnected spaces, not widely connected, not
having a dispersion point, and not being strongly connected. The first is Hausdorff and
the second is Urysohn and almost regular.
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1. Introduction. The first example of a biconnected space with a dispersion point
was constructed by B. Knaster and K. Kuratowski in [23], and the first example of a
biconnected space without a dispersion point by E. W. Miller in [26]. Two stronger
examples of biconnected spaces without a dispersion point were constructed by M.
E. Rudin in [30, 31]. The example in [30] has the property that the complement of
every connected subset containing more than one point is at most countable and the
example in [31] has the property of being widely connected. All spaces in [26, 30, 31],
are subsets of the plane. The first two are constructed under the Continuum Hy-
pothesis and the third one under Martin’s Axiom. In [7], G. Gruenhage constructed a
countable connected Hausdorff space under Martin’s Axiom and a perfectly normal
connected space under the Continuum Hypothesis in which the complement of every
connected subspace containing more than one point is finite. In [36], we constructed
a countable widely connected Hausdorff space and a countable widely connected and
biconnected Hausdorff space.
Now, we construct two countable spaces which are biconnected without being widely

connected and without a dispersion point. The first is Hausdorff, and the second is
Urysohn almost regular. In addition, as it is the case with widely connected spaces and
spaces with a dispersion point, both have the property of not being strongly connected
[13]. The construction is based on a modification of [16] or [20]. It can be also based
on [37]. From the construction, it follows that there exist 2c non-homeomorphic such
spaces.
A space X is called
(1) Urysohn if every pair of distinct points of X have disjoint closed neighborhoods.
(2) Almost regular if X contains a dense subset at every point of which the space is

regular.
A connected space X is called
(1) Biconnected (K. Kuratowski [24]) if it admits no decomposition into two connected

disjoint proper subsets containing more than one point.
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(2) Widely connected (P. M. Swingle [34]) if every connected subset, containing more
than one point, is dense.
A point x of a connected space X is called
(1) A cut point if X\{x} is disconnected.
(2) A dispersion point if X\{x} is totally disconnected.
A connected space (X,τ) is called
(1) Maximal connected if, for every strictly finer topology σ , the space (X,σ) is not

connected.
(2) Strongly connected if it has a finer maximal connected topology.
Biconnected spaces (countable or not, with or without a dispersion point) are con-

sidered in [26, 37, 1, 2, 3, 4, 6, 9, 10, 11, 18, 19, 21, 22, 25, 27, 28, 29, 33, 38, 39] and
maximal connected spaces in [13, 1, 5, 8, 12, 14, 15, 32, 35].

2. Results

The space T . For the construction of the countably, biconnected and not widely
connected Hausdorff space T , we first construct an appropriate countable Hausdorff
totally disconnected space X containing a specific point p and a closed discrete sub-
space N which cannot be separated by disjoint open sets. Then keeping fixed the
subspace N and condensing the point p (instead of condensing pairs of points as in
[16, 20], or [37]), we construct the space T .
On the set

X = {aki : k,i= 1,2, . . .}∪N∪{p}, (2.1)

whereN is the space of natural numbers, we define the following topology: every point
aki is isolated. For the points of N a basis of open neighborhoods in X is defined as
follows: let � be a free ultrafilter on N and let �k be the copy of � in {aki : i= 1,2, . . .}.
If U ∈�, we denote the copy of U in {aki : i= 1,2, . . .} by Uk. Then, for every k∈N, a
basis of open neighborhoods is the collection of sets

U(k)= {k}∪{aki : aki ∈Uk}, U ∈�. (2.2)

For the point p, a basis of open neighborhoods is the collection of sets

U(p)= {p}∪{aki : k∈U}, U ∈�. (2.3)

Obviously, the space X is Hausdorff and totally disconnected but not regular since
the point p and the closed subset N cannot be separated by disjoint open sets.
We observe that every basic open neighborhood of p is defined by some U ∈�, and

every U ∈� defines a basic open neighborhood U(p). Obviously, U(p)\U(p)=U .
Let X1(n), n= 1,2, . . . be disjoint copies of X and let N1(n) and p1(n) be the copies

of N and p, respectively, in X1(n). The copies of U(k) and U(p) in X1(n) are denoted
by U(k1(n)) and U(p1(n)), respectively. Since the set P1 = {p1(n) : n= 1,2, . . .} and
the dense subset D = X\N∪{p} of isolated points of X are countable, there exists
one-to-one function f1 of P1 onto D. We attach the spaces X1(n), n = 1,2, . . . to the
space X identifying simultaneously each point p1(n) with the point f1(p1(n)) of D
and each set N1(n) with N (by putting k1(n) on k).
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On the set

T 1 =X∪
∞⋃

n=1

(
X1(n)\(N1(n)∪{p1(n)})

)
, (2.4)

we define the following topology: every point of T 1\X is isolated. For every k ∈ N, a
basis of open neighborhoods is the collection of sets

O1
U(k)=U(k)∪

∞⋃

n=1

(
U
(
k1(n)

)\{k1(n)}
)

∪
⋃

f1(p1(j))∈U(k)

(
U
(
p1(j)

)\{p1(j)}
)
, U ∈�.

(2.5)

For every isolated point x of X, a basis of open neighborhoods is the collection of
sets

O1
U(x)= {x}∪

(
U
(
p1(j)

)\{p1(j)}
)
, U ∈�, (2.6)

where f1(p1(j))= x.
For the point p, a basis of open neighborhoods is the collection of sets

O1
U(p)=U(p)∪

⋃

f1(p1(j))∈U(p)

(
U
(
p1(j)

)\{p1(j)}
)
, U ∈�. (2.7)

It can be easily proved that the space T 1 is Hausdorff, totally disconnected, and
contains the space X as a closed nowhere dense subset. We observe that every ba-
sic open neighborhood in T 1, of every x ∈ X is defined by some U ∈ �, and every
U ∈ � defines in T 1, a basic open neighborhood O1

U(x), for every x ∈ X. Obviously,
O1
U(x)\O1

U(x) = U . Furthermore, for every pair of points x,y of D and every basic
open neighborhoods O1

U(x),O
1
V (y),U,V ∈�, of x,y respectively, in T 1, it holds that

O1
U(x)∩O1

V (y) �= ∅, which implies that every continuous real-valued function of T 1
is constant on D and, hence, on X since D is dense in X.
We construct by induction the spaces T 2,T 3, . . . ,Tm, where

Tm = Tm−1∪
∞⋃

n=1

(
Xm−1(n)

∖(
Nm−1(n)∪{pm−1(n)})

)
, (2.8)

and whereXm−1(n),n= 1,2, . . . are disjoint copies of the initial spaceX, andNm−1(p),
Pm−1(n) are the copies of N,p in Xm−1(n), respectively. Each point pm−1(n) is iden-
tified with the point fm−1(pm−1(n)), where fm−1 is one-to-one function of the set
Pm−1 = {pm−1(n) : n = 1,2, . . .} onto the dense subset of isolated points of Tm−1.
Each set Nm−1(n) is identified with the set N (by putting km−1(n) on k).
It can be easily proved that the space Tm is Hausdorff, totally disconnected, and

contains the space Tm−1 as a closed nowhere dense subset. We observe that every basic
open neighborhood in Tm, of every x ∈ Tm−1 is defined by someU ∈ �, and everyU ∈
�, defines in Tm, a basic open neighborhood OmU (x), for every x ∈ Tm−1. Obviously,
OmU (x)\OmU (x) = U . Furthermore, for every pair x,y of isolated points of Tm−1 and
every basic open neighborhood OmU (x),O

m
V (y),U,V ∈ � of x,y respectively, in Tm,
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it holds that OmU (x)∩OmV (y) �= ∅, which implies that every continuous real-valued
function of Tm is constant on the set of isolated points of Tm−1 and, hence, it is
constant on Tm−1 since this set is dense in Tm−1.
Finally, we consider the set T =⋃∞m−1Tm on which we define the following topology :

If t ∈N, we first consider the basic open neighborhood O1
U(t) of t in T 1 and then its

corresponding basic open neighborhood in Tm,

OmU (t)=Om−1U (t)∪
∞⋃

n=1

(
U
(
km(n)

)\{km(n)}
)

∪
⋃

fm(pm(j))∈Om−1U (t)

(
U
(
pm(j)

)\{pm(j)}
)
.

(2.9)

A basis of open neighborhoods of t in T is the collection of sets

OU(t)=
∞⋃

m=1
OmU (t), U ∈�. (2.10)

If t ∈ T\N, then either t ∈X\N or t is an isolated point of T l, l= 1,2, . . . , where l is
the minimal integer for which t ∈ T l.
In the first case, we first consider the basic open neighborhood O1

U(t) of t in T 1 and
then its corresponding basic open neighborhood in Tm,

OmU (t)=Om−1U (t)∪
⋃

fm(pm(j))∈Om−1U (t)

(
U
(
pm(j)

)\{pm(j)}
)
. (2.11)

A basis of open neighborhoods of t in T is the collection of sets

OU(t)=
∞⋃

m=1
OmU (t), U ∈�. (2.12)

In the second case, we first consider the basic open neighborhood O1
U(t) of t in T l

and then its corresponding basic open neighborhood in T l+m,

Ol+mU (t)=Ol+m−1U (t)∪
⋃

fl+m(pl+m(j))∈Ol+m−1U (t)

(
U
(
pl+m(j)

)\{pl+m(j)}
)
. (2.13)

A basis of open neighborhoods of t in T is the collection of sets

OU(t)=
∞⋃

m=1
OmU (t), U ∈�. (2.14)

From the definition of topology on T , it follows that, for every t ∈ T and for every
U ∈�, the set OU(t) is open-and-closed in T\N and that OU(t)\OU(t)=U .

Proposition 1. The space T is countable biconnected Hausdorff not widely con-
nected and without a dispersion point.

Proof. That T is countable Hausdorff is obvious. To prove that T is connected, we
consider two arbitrary points x, y of T and let m be the minimal integer for which
both x,y ∈ Tm. But then every continuous real-valued function of Tm+1 is constant
on Tm and, hence, for every continuous real-valued function g of T , g(x) = g(y),
which implies that T is connected.
Suppose now that T is not biconnected and letA, B be two connected, proper disjoint



TWO COUNTABLE, BICONNECTED, NOT WIDELY CONNECTED . . . 255

subsets containing more than one point and A∪B = T . By the construction of the
space T , it follows that T\N is totally disconnected. Hence, there exists b ∈ B\N. Let
OU(b) be the basic open neighborhood of b defined by some U ∈ �. Suppose that
OU(b)∩B∩N =W �= ∅. If W �∈ �, then N\W ∈ � and, hence, for the set ON\W(b), it
holds thatON\W(b)∩N=N\W . Therefore,OU(b)∩ON\W(b)∩B∩N=∅, which implies
that the set OU(b)∩ON\W(b)∩B is open-and-closed in B. Consequently, B ⊆ OU(b)
for every U ∈ � and, hence, B is a singleton, which is a contradiction. Hence, W ∈ �.
But then if we consider a point a ∈ A\N and the basic open neighborhood OU(a) of
a, it follows, in a similar manner, that the relation OU(a)∩A∩N= V �= ∅ implies that
V ∈ �, which is impossible because B∩A = ∅. Therefore, either OU(a)∩A∩N = ∅
or OU(b)∩B∩N=∅. Since OU(a)\OU(a)⊆N and OU(b)\OU(b)⊆N, it follows that
either OU(a)∩N is open-and-closed in A or OU(b)∩N is open-and-closed in B. Hence,
either the subset A is a singleton or not connected, or the subset B is a singleton or
not connected.
That T is not widely connected is obvious observing that, for every U ∈� and every

t ∈ T , the subset OU(t) is connected. That T has no dispersion point is obvious by its
construction.

Corollary 1. The space T is not strongly connected.

Proof. let τ denote the topology on T and let τmax denote a maximal connected
topology finer that τ . By [13, Cor. 14A], it follows that the space (T ,τmax) has infinitely
many cut points. Hence, if t is such a point, then there exist two disjoint subsets K and
L such that K and L are open-and-closed in T\{t}, contain more than one point, and
K∪L = T\{t}. Since the sets K∪{t},L∪{t}, are connected in (T ,τmax), they are also
connected in (T ,τ). But by the proof of Proposition 1, it follows that, for every pair of
connected subsets of (T ,τ), which contain more than one point, their intersections
include a member of �. Therefore, the set (K∪{t})∩(L∪{t})= {t}must be a member
of �, which is impossible.

Corollary 2. There exists 2c mutually non-homeomorphic countable biconnected
Hausdorff spaces not widely connected and without a dispersion point.

Proof. Because [19, Thm. 10], there exists 2c different types of free ultrafilters on
the discrete subspace N of the initial space X.

The space S. For the construction of the countable biconnected Urysohn almost
regular space S, we first construct an appropriate countable Urysohn almost regular
non-regular space and then, using the method of F. B. Jones [17], we construct a space
Y having the additional property of containing a point∞ at which the space Y is regu-
lar. The condensation process of this regular point is the same as in the construction
of the space T .
We consider the initial spaceX and, for everyn∈N, we consider a sequence 〈bni〉i∈N

converging to n and consisting of isolated points not belonging to X. We set B = {bni :
n,i= 1,2, . . .} and we consider the space C =X∪B. Let C1, C2 be disjoint copies of C
and let p1, p2 andN1,N2 be the copies of p andN in C1, C2, respectively. We attach the
space C1 to C2 identifying the point p1 with p2. We set q = p1 = p2 and we consider the
space Z = (C1\{p1})∪{q}∪ (C2\{p2}) which is obviously Hausdorff but not regular
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since the point q and the closed subset N1∪N2 = K cannot be separated by disjoint
open sets.
Let Zn, n = 1,2, . . . be disjoint copies of Z and let

⋃∞
n=1Zn be their disjoint union

(topological sum). We add one more point r and, on the set L = {r}∪⋃∞n=1Zn, we
define a basis of open neighborhoods of r as follows: we consider the copies B1, B2 of
B in C1, C2, respectively. We set B1∪B2 = R and let Rn, n= 1,2, . . . be the copy of R in
Zn. Let � be a free ultrafilter on the closed discrete subspace Q = {qn : n = 1,2, . . .},
where qn is the copy of q in Zn. Then, for every U ∈�, a basis of open neighborhoods
of r is the collection of sets U(r)= {r}∪{∪Ri : qi ∈U}.
It can be easily verified that the space L is Urysohn but not normal since the closed

subsets Q and
⋃∞
n=1Kn, (Kn is the copy of K in Zn) cannot be separated by disjoint

open sets. Also, the subsets
⋃∞
n=1Kn, and the point r cannot be separated by disjoint

open sets, while Q and r can be separated by disjoint open sets but not by disjoint
open-and-closed sets. However, L is not regular at r . Since the closed subsets Q and
{r} of L cannot be separated by a continuous real-valued function, it follows that if
we consider Ln, n= 1,2, . . . disjoint copies of L, we can apply the construction in [17]
and obtain a space Y with the following properties
(1) It is countable Urysohn containing a dense subset of isolated points.
(2) It contains a point ∞ at which Y is regular.
(3) The point ∞ and each copy Qn, n = 1,2, . . . of the subset Q, in Ln cannot be

separated by disjoint open-and-closed subsets, that is they cannot be separated by a
continuous real-valued function of Y .

Proposition 2. There exists 2c mutually non-homeomorphic countable biconnect-
ed Urysohn almost regular spaces, not widely connected, not having a dispersion point,
and not being strongly connected.

Proof. We imitate the condensation process that we used in the construction of
the space T using the space Y in place of the space X and the point ∞ and the set
Q1 in place of p and N, respectively. Let Sm, m = 1,2, . . . and S = ⋃∞m=1Sm be the
corresponding spaces to Tm and T , respectively. It can be easily proved that S is
Urysohn. Since the different copies of the regular point ∞ are attached in each step
to the isolated points of Sm, m = 1,2, . . . , it follows that these points remain regular
in the final space S. Obviously, the set of all these points is dense in S and, hence, S
is almost regular.

All the other properties of S are proved as in Proposition 1 and Corollaries 1 and 2.

Remark. In [37], E. K. van Dowen constructed a regular space with a dispersion
point on which every continuous real-valued function is constant. We can modify his
method and construct a countable biconnected Hausdorff space not widely connected,
not having a dispersion point, and not being strongly connected. For this, we consider
again the initial space X and let Xi, i= 1,2, . . . be disjoint copies of X. We denote by xi
the copy of x ∈X in Xi, and by Ni the copy of N. We attach the spaces Xi, i= 2,3, . . .
to X1 identifying each copy Ni with N1, that is by putting each ni to n1. We denote
this point by n. In the space Z = N∪⋃∞i=1(Xi\Ni), the subset P = {pi : i = 1,2, . . .}
and the subset D consisting of all isolated points of the copies Xi are countable and,
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therefore, there exists a one-to-one function g of P onto D. On the quotient space
TX =N∪{(pi,g(pi)) : i= 1,2, . . .}, we define a second topology τ in a similar manner
as in the construction of the space T . Obviously, the topology τ is weaker than the
quotient topology of TX . It can be proved, as in Proposition 1 and Corollaries 1 and 2,
that (TX,τ) is the required space.
In a similar manner, we can construct a Urysohn almost regular space having all the

above properties. For this, it suffices to consider space Y as the initial space.

Acknowledgement. The author is grateful to the referee for his suggestions and
comments.
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