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ABSTRACT. Let X be an arbitrary nonempty set and &£ a lattice of subsets of X such that
b, X e L. A(L) is the algebra generated by & and .M (£) denotes those nonnegative, finite,
finitely additive measures p on «(£). I(£) denotes the subset of M (&) of nontrivial zero-
one valued measures. Associated with u € I(¥) (or I5(£)) are the outer measures u’ and
u’’ considered in detail. In addition, measurability conditions and regularity conditions are
investigated and specific characteristics are given for &,,~, the set of u”’-measurable sets.
Notions of strongly o-smooth and vaguely regular measures are also discussed. Relation-
ships between regularity, o-smoothness and measurability are investigated for zero-one
valued measures and certain results are extended to the case of a pair of lattices £1,%>
where £ C ¥>.
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1. Introduction. Let X be an arbitrary nonempty set and & a lattice of subsets of X
such that ¢, X € &. A(¥) is the algebra generated by £ and .M (&¥) denotes those non-
negative, finite, finitely additive measures on #(£). Associated with a u € AM(£), there
is a finitely subadditive outer measure u’(see below for definitions) whose properties,
especially pertaining to measurability have been investigated (see [9, 8]).

For a measure u € Jy(£), the elements of JL(£) which are o-smooth on &£, we
associate an outer measure u’’. If u is also £-regular, then u’’ coincides with the usual
induced outer measure u*. The more general case is investigated here. The results
so obtained extend the results of [4] obtained only for zero-one valued measures.
In particular, we investigate ¥~ the pu’’-measurable sets. Restrictions on pu yield still
stronger results, for example, if we assume that p is strongly o-smooth on & or if u
is vaguely regular.

It is well known (see [6]) that, for a yu € M (&), there exists an £-regular measure v
such that y < v(&) G.e.,, u(L) < v(&¥) forallL € &£) and u(X) = v(X). If u € M (L),
we would like v to be not only regular but also o-smooth on ¥ and, hence, countably
additive. This will always be the case under certain strong lattice demands (such as
normal and countably paracompact, see [5]). Here, we investigate conditions in terms
of u"’ for such results to hold.

We finally extend a number of these results to the case of a pair of lattices £; and ¥,
where £; C ¥,. We begin with a brief review of some lattice definitions and notations
which are used throughout. We adhere to standard notation. See, for example, [1, 3,
2,5,8,10].
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2. Background and notations. We begin with some standard background material
for the reader’s convenience. Let X be an abstract set and &£ a lattice of subsets of X.
It is assumed that ¢,X € &. A(£) denotes the algebra generated by & and o (¥) the
o-algebra generated by &. The lattice & is called normal if, for any L;,L, € &£ with
L1 NLy = ¢, there exist L3,Ly € £ with L; C L;,L, C L} and L; N1y = ¢ (where prime
denotes complement).

We give now some measure terminology. A (£) denotes the set of finite valued,
nonnegative finitely additive measures on #(&£). A measure u € M(£) is called

o-smooth on ¥ if, for all sequences {L,} of sets of £ with L, | ¢, u(L;,) — 0.

o-smooth on « () if, for all sequences {A,,} of sets of A (¥£) with A, | ¢, u(A,) — 0,
i.e., countably additive.

&-regular if, for any A € A(F),

u(A) =sup{u(L) |ILC ALeZ}. (2.1)

We denote by Mg (L) the set of $-regular measures of M(L); My (£) the set of o-
smooth measures on &, of M(£); M7 (£) the set of o-smooth measures on A (¥)
of M(L); MF (L) the set of P-regular measures of M7 (£). In addition, I(£), Ig(£),
I (&), I7(%), and I§ (¥) are the subsets of the corresponding Ji’s which consist of
the nontrivial zero-one valued measures.

3. Finitely subadditive and cover regular outer measures. In this section, we de-
fine finitely subadditive outer measures (f.s.a.) and (cover) regular outer measures in
contrast to an ordinary outer measure which is countably subadditive. Associated with
ue ML) and pu € My (L) are the outer measures y’ and p”’ which were investigated
in [9]. We first review some of the basic properties of these outer measures and then
develop new results.

DEFINITION 3.1. A nonnegative u defined on % (X) is a f.s.a. outer measure if
(a) u is nondecreasing.

(b) u(UryEr) <> u(Ey) for any Ey,F,,...,Ey CX.

(0) p(p) =0.

DEFINITION 3.2. Let v be a f.s.a. outer measure. We say that a set E is measurable
with respect to v if, for any A C X,

V(A) =v(ANE)+Vv(ANnE"). (3.1)

Let &, be the set of v-measurable sets, with v a f.s.a. outer measure. v is called (cover)
regular if, for any S C X, there exists E € &, such that S C E and v(S) = v(E). Itis
easy to prove that if v is a f.s.a. outer (cover) regular measure and v (X) is finite, then
Ec %, if and only if v(X) = v(E) + V(E’).

DEFINITION 3.3. Let u € M(¥) and define

n
W (E)=inf > u(L;), Ec|JL,Li €% EcCX. (3.2)
i=1 i=1
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The definition is equivalent to
W (E)=infu(l’), EcL,Le¥. (3.3)
Clearly, p’ is a f.s.a. outer measure and E € &~ if and only if
WA > (AnE)+pu (A nE) foral AeZ® (see[9)). (3.4)
DEFINITION 3.4. Let u € Ay (£) and define

p”(E) =inf > p(L;), Ec|JL,Lie% EcX. (3.5)
i=1 i=1

Clearly, u” is a countably subadditive outer measure and E € &, if and only if
U A =" (A'NnE)+u"(A'nE") forallAc¥ (seel9]). (3.6)

Clearly, for u € I(£) (or I(£)), u’” and "’ are regular outer measures. In addition, if
ueI(¥), then

S = {ECXIEDL,LESE,/J(L) =lorE' DL Le¥ ul)= 1}. (3.7)
Also, if y € I5(&£), then

S = {E CXIED (LnLln €L, u(Ly) =10r E'D () Lu, Ly € £, u(Ly) = 1}. (3.8)
n=1 n=1
Furthermore, if py € I, (£) , then
(@ p=p" =),
(b) " <y’ =p(&'), and
(0) f pelg($), then p=p" =p (L) and p’ = p’" = p(&").
These results extend readily to the general case of y € My (£).

THEOREM 3.1. Let u € My (£). Then
(@ p”"(X)=puX,
b) pu=p”(¥).

PROOF. (a) Suppose that u”’ (X) < u(X). Then there exists L; € & such that

XcC UL; and Zu(L;) < p(X). (3.9)
i=1 i=1
Hence,
00 n n
u(X)>zu(L;)=7111110102u(L;)27111_rr010u<UL;> (3.10)
i=1 i=1 i-1

with UL L € & and UL L 1 U L) = X Since p € Mg (£),limy . p (U L)) = p(X),
a contradiction.
(b)

p' L) =p”" (X)—p" (L) =puX)—p" (L)
> p(X) —p' (L") = u(X) —p(L') = p(L),

since pu’ = u(<£’). O

(3.11)
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DEFINITION 3.5. Let u € M(£) and define
ui(E) =sup{u(L),LC E,Le %, E CX}.

The following statements are easy to prove and they can be found in [9].

(@ puX)=pL)y+p' (L"), Le .

(b) uX)=p;(L)+p' (L),Le

(c) E€ ¥y if and only if p;(E) = p'(E), E CX.

(d) If &£ is normal, then y; is finitely additive on &'.

DEFINITION 3.6. Let u € Jl,(¥) and define, for E C X,
Wi (E) = u(X) — " ().
THEOREM 3.2. Let u € My (£). Then

(@ p<pj=<p’ <y,
(b) If, in addition, u"" is a (cover) regular outer measure, then

E €%, if and only if u;j(E) = u" (E).

PROOEF. (a) Clearly, the relation u” < u’ always holds. Now, consider

p(X) = pi(E) = u(X) —sup {u(L),LC E,L € £}
=inf{u(X)-uL),E' cL',Le %}
=inf{u(L'),E' cL',L € ¥}
=y’ (E').

Hence,
pi(E) = u(X) — ' (E")
and since p;(E) = pu(X) —p"'(E"), it follows that p; < pj. Finally,
i (E) =p" (X)—p"(E") < u"”(E)

since '’ is an outer measure.

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(b) Since p”" is aregular outer measure, E € ¥~ if and only if u"”(X) = p"" (E) + u"' (E").

Suppose that E € ¥, Since
HE MG (L),  pX)=p"(X)=p"(E)+u"(E),

hence, u;(E) = pu” (E).
Conversely, assume that p;(E) = p”' (E). We have

HX) = ui(E)+u" (E') =u" (E)+ " (E"),
hence, p""(X) = p""(E) + u” (E').
DEFINITION 3.7. Let u € Jl,(£). We say that u satisfies

CONDITION (3.1). If p” (L") =supi{pul),Lcl,le¥ Le}.
In particular, if u € I, (£), we say that u satisfies

(3.18)

(3.19)

CONDITION (3.2). If p”’ (L") = 1, L € & implies that there exists L € $,I c L', and

u(l) =1.
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THEOREM 3.3. Let u € My (L) and suppose that u’’ is a (cover) regular outer mea-
sure and that p satisfies condition (3.1). Then

@ £y,

(b) p=<p" (L), where p" |uc) € M y).-

PROOF. (a) By Theorem 3.2(a), we have p; < u; < p”’ < p’. But since u satisfies
condition (3.1), it follows that p; (L") = pu”’(L),L € &. Therefore, u; = p; = u”’ on £'.
Hence, by Theorem 3.2(b), £’ ¢ ¥,,» which implies that £ C &.

(b) By Theorem 3.1, u < pu”(£); £ ¢ ¥, implies that #(&£) c ¥, since ¥, is an
algebra; u” a measure on ¥, implies that u” |4 is a measure on {(£). We have

W' (L) =supfu(l),Lcl LesLes]. (3.20)
Therefore, for given ¢ > 0, there exists I c L’ such that
p' (L) <pu@)+e<p’(L)+e, (3.21)

hence, p’" is $-regular. Finally, " € Ay (L), Mg (£) implies that p’" € Mg (£). O
As a special case, we obtain the following result (see [4]).

COROLLARY 3.1. Let u € I,(&¥) and suppose that u satisfies condition (3.2). Then
Ly andp < p'’' (L), where p'' |y € Ig (£).

We next consider a pair of lattices of subsets of X, ¥; and ¥,, where £; C &,, and
investigate some of the above results.

DEFINITION 3.8. Let &£; C &> be lattices of subsets of X and let u € My (£1). We
say that u satisfies

CONDITION (3.3). If "’ (B’) = sup{u(A),ACB ,Ae¥,Be¥L}.

In particular, if u € I, (£1), we say that u satisfies

CONDITION (3.4). If u”(B’) =1 for some B € ¥, implies that there exists A € ¥,
ACB,and u(A) =1.

THEOREM 3.4. Let ¥, C &, be lattices of subsets of X and let u € My (£L1). Suppose
that u'' is a (cover) regular outer measure and u satisfies condition (3.3). Then

@ £ c,r,

(b) p <’ lac) € MR (£1) on £y, and

©) sz, € MF (£L2).

PROOF. (a)Let B € ¥». We have
pi(B') =sup {u(A),ACB A€ %,Be %} =u" (B). (3.22)

Combining with Theorem 3.2(b), u; = pj = "’ (¥£5). u’’ regular implies that £, c ¥,
hence, &> Cc ¥,

(b) and (c) Now, p € My (£;). Therefore, u < u” (£y). Since £ € &> € ¥y, it follows
that A (&), 4(£;) € ¥y whichis a o-algebra. Also, p”’ being a measure on ¥,,» implies
that u" |4, is a measure on A(£;) and '’ l4,) is a measure on s4(£>). Since u
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satisfies condition (3.3), for given & > 0, there exists A C B’ such that
U’ (B") <u(A)+e<u”’(A)+e, (3.23)

hence, "’ is £;-regular and ¥,-regular. As in Theorem 3.3, it follows that u" |4 ,) €
MY (£1) and p' |s(z,) € MR (L2). O

COROLLARY 3.2. Let ¥; C ¥, be lattices of subsets of X and let y € I,(£1). If u
satisfies condition (3.4), then £, C Ly, P < P’ |z, € IR (£1) on £ and P’ |y, €
IR (£2).

4. Strongly o-smooth measures. To continue investigating &¥,, we consider first
the notion of a strongly o-smooth measure and give some new results and extensions
of some of the preceding theorems. Then we consider vaguely regular measures and
their relationship with strongly o-smooth measures.

DEFINITION 4.1. A measure u € M (&) is strongly o-smooth on & or u € M(o,¥) if
and only if for any sequence {L, € £}L,, | L where L € &, then

p(L) =infp(Ly) = lim p(Ly). (4.1

Correspondingly, for u € I(£), we have I(0, &) the set of strongly o-smooth zero-one
valued measures on £.

THEOREM 4.1. () If p € M(0,2L), then p”’ = p(&L') and Sy C Sy

(b) If u € M (£) and p” is a (cover) regular outer measure, then &y C £y

(©) If u € My (L) and p'’ is a (cover) regular outer measure and u'’ = u(<£'), then
ueM(o,?).

PROOF. (a) By Theorem 3.1(b), "’ < u(¥’). LetL € £ and L, € & such that L’ C
Ur='r!. ThenL = Un=1(L;,nL"), hence,

p(L) < > p(L,nl’) < > u(Ly,), (4.2)
n=1 n=1
and then
uL) < inf{ >u(Ly),L'c UL, LL, 55} =u"(L). (4.3)
n=1 n=1

Thus, p”’" = u(£'). Now, in general , y’ = pu(£’), hence, p’ = p”’(£’). Let E € ¥ and
AeX.

A= (A) 2 (A NE)+ ' (A NE) 2z u (A nE)+u”" (A’ nE), 4.4)

since pu” < p’ in general. Hence, E € ¥+ and E arbitrary in ¥,. Therefore, ¥, C ¥,.

(b) By Theorem 3.2(a), p; < u; < pu”’ < p’. Let E € ¥v. Then p;(E) = p’(E), hence,
Wi(E) = pj(E) = p” (E) = p’(E). By Theorem 3.2(b), it follows that E € ¥, and since E
is arbitrary in &, it follows that &,y C .
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(c) Suppose that u ¢ M (o ,¥). Then there exist L,, | L, with L,,L € ¥, and limu(L,) >
u(L) +¢,& > 0. Hence,

limu(L,) < u(L) —«. 4.5)
But (;,_; L, = L implies that U;,_; L, =L" and " is regular and p’’ = u(<£’), hence,
limp(Ly,) = Lim p” (L) = u”" (L) = p(L') = lim p(L},) + ¢, (4.6)

a contradiction. O

THEOREM 4.2. Let u € M(o,¥) and suppose that u satisfies condition (3.1). Then
U e MZ(P).

PROOF. u €l (0,¥) implies that u'' = u(<£’), hence,
p’ (L) =pL) =sup{ul),Lcl Le%Led}, 4.7)

i.e., U € Mg(£). Therefore, u € MY (£). O

COROLLARY 4.1. Let u € I(0,%¥) and suppose that u satisfies condition (3.2). Then
u € Ig(L). See [4].

THEOREM 4.3. (a) Let u € M(L). Then
FunE={LeL|ul)=p L)} (4.8)
(b) Let u € My (£) and suppose that u' is a (cover) regular outer measure. Then
FprnE={LeP|ulL)=pn" (L)} (4.9)

ifand only if y € M(o, ).

PROOF. (a)LetL e ¥y n&. Then u' (L) = p;(L) = pu(L) since p; = u(£). Conversely,
let L € & such that u(L) = p’(L). Then p' (L) = p; (L), i.e, LeFy.

(b) Suppose that 4 € M(0,¥) and letL € ¥, N £. By Theorem 4.1(a), "’ = u(£') and
since p”' (X) = u(X) and u’’ regular, we get

pu(L) = p” (L). (4.10)
Now, suppose that L € ¥ and u(L) = u”’ (L). Hence,
p'X) =puX) = pL)+p’) =p" L) +pu" (L"), (4.11)

ie, L € ¥y. Conversely, suppose that ¥,» N ={Le L | ul) =pu”(L)}. Then p"” =
u (&) and since p'’’ regular, it follows by Theorem 4.1(c) that y € M (0, &). O

THEOREM 4.4. Suppose that & is normal and let p € M(0,L). IfA=y_1B,, A€
$,BpeZ all n,thenAe S,y C Sy
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PROOF. By Theorem 4.1(a), ¥,y C ¥,~. By normality, there exist C, and D,, € &
such that A ¢ C,, ¢ Dy, C B,,. Therefore,

8

A=(\Ch=(\Dn= By, (4.12)
n=1 1 n=1

n

and we may assume that C,, | and D, !|. Then pu(A) = limu(D;,) since u € M(T,&F).
Hence,

H(A) < u(Cy) < p(Dp) — p(A) asn— oo. (4.13)

Clearly,
H(A) =limu(Cy) = p' (A), (4.14)

and so
H(A) = p' (A). (4.15)

But, in general, u < u’(¥£), hence, u(A) = p’(A). Now, by Theorem 4.3(a), it follows
that A ¥y N, O

REMARK. In the zero-one valued case, we can weaken the hypothesis and the con-
clusion to obtain that if u € I (¥) and & is normal, then, for A € £ with A =",,_, B},,
B, € £ all n, it follows that A € &,;.

DEFINITION 4.2. We say that u € s (£) satisfies

CONDITION 4.1. If

p(L") —sup<|u”(ﬂLn), ﬂLnCL’,L,Lnef.f]». (4.16)
n=1

n=1

We say that u € M (£) satisfies
CONDITION 4.2. If

u"(L')—sup<|u"(ﬂLn), ﬂanL',L,LneEf]». 4.17)
n=1

n=1

DEFINITION 4.3. Let u € My (&£). pu is called vaguely regular if
u) =sup{p”’(L),Lcl,Le¥ L} (4.18)
The set of vaguely regular measures on &£ is denoted by .l (£).

THEOREM 4.5. Let u € My (£). Then

(a) If u satisfies condition (4.1), then it also satisfies condition (4.2).

(b) If u € M(0,&), then u satisfies condition (4.1) if and only if u satisfies condi-
tion (4.2).

(c) If u satisfies condition (4.1) and u"’ is (cover) regular, then u € M (o, <L).

(d) If u € M\ (L) and u'’ is (cover) regular, then u satisfies condition (4.1).

(e) If u e My (L) and u'" is (cover) regular, then u € M(o,¥).

PROOF. In general, u”’ < u(¥’).
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(a) Suppose that u satisfies condition (4.1). Then for L &£

p’ (L) <p(L') =sup {u”(ﬂ Ln>, (L. cLLL, e&f} sp’'(L) =pl). 419

n=1

Hence,

p’ (L) =p(L') =sup {u( N Ln>, (JL.cLl LL,€ 55}, (4.20)
n=1 n=1
i.e., u satisfies condition (4.2).
(b) Suppose that u satisfies condition (4.2). Since u € M(o,¥), we have u”’ = u'(£).
Hence, p”’' (L") = u(L") = sup{p” (Ny-1Ln),Npey Ln C L', L, L, € £3.
(c) Let L € &. Since u satisfies condition (4.1),

u(L’)=sup{u”(ﬂLn),ﬂanL',L,Lneét?}. (4.21)
n=1

n=1
If u & M(o,%£), then there exist L,, | L, where L,L,, € £ and limu(L,) > u(L) + &, > 0.

Then limu (L)) < p(L") —& (-1 Ln =L.
Hence, U;,_; L), = L". By condition (4.1), there exists A,, € ¥ such that

(JAmcLl and u”(ﬂAm) >p(L)—e>limu(L),). 4.22)
n=1 n=1
But y'’ is regular, thus
limp” (L)) =" (L) = u"( A ) > limp(L,) = limu” (L)), (4.23)

a contradiction.
(d)

u”(L’)su(L')=sup{u (L),LcL LeiBLeiB}

IA

w»

[=

T
—~

T:\
Ve

D)

=

N
N——
iDe 3

L,cLl LLy€ ff} (4.24)

Therefore, u”’ = u(¥’) and p'"’ isregular. By Theorem 4.3(c), it follows that u € M (0, &).
Hence, p(L") = sup{p” (Mp=1Ln),Np=1 Ln CL,L,Ly € £}

(e) See part (d) above. Or, u satisfies condition (4.1) by (d). Use (c) to obtain that
ueMm(o,2). O

THEOREM 4.6. Let u € My (). If u= " (L) and u'’ is a (cover) regular outer mea-
sure, then

(@ Lcyr,

(b) ueM? (L), and

(c) u satisfies condition (4.1).
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PROOF. (a) We must show that u” (X) = u’’ (L) +u” (L"), for all L € £. If we assume
that p”’ (X) < u” (L) +u”" (L"), we get a contradiction because u'’ < u(%£’).

(b) Since ¥ is a o-algebra, we have s((£) € ¥~ and then p”’|4) is a measure on
A(L). u”’ countably additive and y = p’' (£) implies that yu € M7 (£).

(c) Let L € £ and € > 0. Then there exists L,, € & such that

Lc YL, (4.25)
n=1
and
pL)+e=p" L) +e> > p(Lly) = > p’(L,) = u”( UL;L> (4.26)
n=1 n=1 n=1

Therefore, since &£ C ¥+, we get
u(L’)—e<u”<ULn>. (4.27)
n=1 0

REMARK. In the case of zero-one valued measures, the above theorem was investi-
gated in [4].
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