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Abstract. We introduce a new stable range condition and investigate the structures of
rings with many idempotents. These are also generalizations of corresponding results of
J. Stock and H. P. Yu.
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In this paper, we examine the properties of rings satisfying idempotent 1-stable
range and give one large class of such rings. We show that many useful exchange
rings belong to the new class of rings. As an application, we also give a new element-
wise characterization of strongly π -regular rings. These are generalizations of many
known results.
Throughout, R is an associative ring with identity. Mn(R) denotes the ring of n×n

matrices over R. LetMn(R) has an identity In, and let its group of units be the general
linear group GLn(R). Set

Bij(x)= I2+xeij (i≠ j,1≤ i, j ≤ 2), (1)

[α,β]=αe11+βe22,

where e11,e22 and eij (i≠ j,1≤ i,j ≤ 2) are all matrix units.

Definition 1. A ring R is said to satisfy idempotent 1-stable range provided that
for any a,b ∈ R,aR+bR = R implies there exists an idempotent e∈ R such that a+be
is left invertible in R.

Proposition 2. The following are equivalent:
(1) R satisfies idempotent 1-stable range.
(2) For any a,b ∈ R,aR+bR = R implies there exists an idempotent e ∈ R such that
a+be∈U(R).

Proof. (2)⇒(1) is trivial.
(1)⇒(2) Given aR+bR = R. Then there exists an idempotent e∈ R such that a+be=
u is left invertible in R. Assume that vu= 1 for some v ∈ R. Then vR+0R = R. Thus,
we can find an idempotent f ∈ R such that v+0·f = v is left invertible in R. So v is
a unit, and then a+be is a unit.

Corollary 3. The following are equivalent:
(1) R satisfies idempotent 1-stable range.
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(2) For any a,b ∈ R,aR+bR = R implies there exists an idempotent e ∈ R such that
a+be is right invertible in R.

Proof. (1)⇒(2) is clear from Proposition 2.
(2)⇒(1) Given aR+bR = R, then there exists an idempotent e∈ R such that a+be=
u is right invertible. Assume that uv = 1 for some v ∈ R. Since

vR+(1−vu)R = R, (2)

we can find an idempotent f ∈ R such that

v+(1−vu)f =w (3)

is right invertible in R. Obviously,

uw =u(v+(1−vu)f )= 1. (4)

This implies that w is a unit. So a+be is a unit, as required.
Now we investigate elements in 2-dimensional general linear groups over rings sat-

isfying idempotent 1-stable range. As an application, we shall give an element-wise
characterization of such rings.

Theorem 4. The following are equivalent:
(1) R satisfies idempotent 1-stable range.
(2) For any A∈ GL2(R), there exists an idempotent e∈ R such that

A= [∗,∗]B21(∗)B12(∗)B21(−e). (5)

Proof. (1)⇒(2) Given any A= (aij)∈ GL2(R). Then we have

a11R+a12R = R. (6)

So we can find an idempotent f ∈ R such that

a11+a12f =u∈U(R). (7)

It is easy to verify that

B21
(
−(a21+a22f )u−1)AB21(f )B12(−u−1a12)= [u,a22−(a21+a22f )u−1a12]. (8)

So

A= [∗,∗]B21(∗)B12(∗)B21
(−f ). (9)

Let e=−f . Thus the result follows.
(2)⇒(1) Given aR+bR = R. Then ax+by = 1 for some x,y ∈ R. It is easy to verify

that (
a by
1 −x

)
= B12(a)

(
0 1
1 0

)
B12(−x)∈ GL2(R). (10)

So we can find an idempotent e∈ R such that
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(
a by
1 −x

)
= [∗,∗]B21(∗)B12(∗)B21(−e). (11)

Thus, a+bye=u∈U(R). So we can verify the following.(
a b
ye 1

)
= B12(b)

(
u 0
0 1

)
B21

(
ye
)∈ GL2(R). (12)

Consequently, there is an idempotent f ∈ R such that(
a b
ye 1

)
= [∗,∗]B21(∗)B12(∗)B21

(−f ), (13)

and then (
a b
ye 1

)
B21

(
f
)= [∗,∗]B21(∗)B12(∗). (14)

Therefore a+bf ∈U(R), as desired.
Theorem 5. The following are equivalent:
(1) R satisfies idempotent 1-stable range.
(2) For any x,y ∈ R, there exists an idempotent e∈ R such that xy−xe+1∈U(R).
Proof. (1)⇒(2) For any x,y ∈ R,(

1+xy)R+(−x)R = R. (15)

So we can find an idempotent e∈ R such that

xy−xe+1= (1+xy)+(−x)e∈U(R). (16)

(2)⇒(1) Given xy+b = 1, there exists an idempotent e∈ R such that(−y)x−(−y)e+1∈U(R). (17)

Let x−e= a. Then
1−ya=u∈U(R). (18)

Clearly, we have
x(1−ya)−ba= x−(xy+b)a= x−a= e. (19)

So
x−ba(1−ya)−1 = e(1−ya)−1. (20)

From xy+b = 1, we have(
x−ba(1−ya)−1

)
y+b

(
1+a(1−ya)−1y

)
= 1. (21)

Hence,
e(1−ya)−1y+b(1+a(1−ya)−1y)= 1. (22)

So
e(1−ya)−1y(1−e)+b(1+a(1−ya)−1y)(1−e)= 1−e, (23)

and then

e+b(1+a(1−ya)−1y)(1−e)= 1−e(1−ya)−1y(1−e). (24)
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Clearly,

1−e(1−ya)−1y(1−e)= (1+e(1−ya)−1y(1−e))−1 ∈U(R). (25)

So

x+b(−a(1−ya)−1+(1+a(1−ya)−1y)(1−e)(1−ya)−1)
= x−ba(1−ya)−1+b(1+a(1−ya)−1y)(1−e)(1−ya)−1
= e(1−ya)−1+b(1+a(1−ya)−1y)(1−e)(1−ya)−1
= (1−e(1−ya)−1y(1−e))(1−ya)−1 ∈U(R).

(26)

Therefore R has stable range one.
Given any A= (aij)∈ GL2(R), there are h,k∈ R such that

a11h+a12k= 1. (27)

Since R has stable range one, there exists a z ∈ R such that

a11+a12z = q ∈U(R). (28)

It is easy to verify that

B21
(−(a21+a22z)q−1)AB21(z)B12(−q−1a12)= [q,a22−(a21+a22z)q−1a12]. (29)

Obviously,

a22−
(
a21+a22z

)
q−1a12 ∈U(R), (30)

and then we havem,n∈ R such that

A= [∗,∗]B21(∗)B12(m)B21(n). (31)

So there is an idempotent f ∈ R such that

1+m(n+1−f )= v ∈U(R). (32)

Let e= 1−f and n= e+s, then n=−e. Consequently, we see that

A= [∗,∗]B21(∗)B12(m)B21(s)B21
(−e). (33)

Since 1+ms ∈U(R), one can verify

B12(m)B21(s)= [1+ms,1]B21(s)B12(m)
[
1,(1+sm)−1

]
, (34)

whence

A= [∗,∗]B21(∗)B12(∗)B21
(−e). (35)

According to Theorem 4, we complete the proof.

As an immediately consequence, we now derive the following result which shows
that idempotent 1-stable range property is left-right symmetric.
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Corollary 6. The following are equivalent:
(1) R satisfies idempotent 1-stable range.
(2) For any a,b ∈ R, Ra+Rb = R implies there exists an idempotent e∈ R such that
a+eb ∈U(R).

Proof. R satisfies idempotent 1-stable range if and only if for any x,y ∈ R, there
exists an idempotent e∈ R such that

xy−xe+1= 1+x(y−e)=u∈U(R). (36)

Then a direct computation gives
(
1+(y−e)x)(1−(y−e)(x+(u−1−1)x))

= (1−(y−e)(x+(u−1−1)x))(1+(y−e)x)= 1,
(37)

whence we can verify that

xy−xe+1= 1+x(y−e)∈U(R) (38)

if and only if

1+(y−e)x ∈U(R) (39)

if and only if

x0y0−x0e0+10 = 10+x0(y0−e0)∈U(R0). (40)

Consequently, from Theorem 5, we see that R satisfies idempotent 1-stable range if
and only if so does the opposite ring R0. Hence the result follows.

Corollary 7. The following are equivalent:
(1) R satisfies idempotent 1-stable range.
(2) For any A∈ GL2(R), there exists an idempotent e∈ R such that

A= [∗,∗]B12(∗)B21(∗)B12(e).

Proof. ReplacingA by its inverseA−1, we know that condition (2) can be seen to be
equivalent to the following condition: for any A∈ GL2(R), there exists an idempotent
e∈ R such that the transpose At = B12(−e)B21(∗)B12(∗)[∗,∗]. In view of Theorem 4,
we show that condition (2) is equivalent to the opposite ring R0 satisfies idempotent
1-stable range. Using Corollary 6, we obtain the result.

Corollary 8. The following are equivalent:
(1) R satisfies idempotent 1-stable range.
(2) Given ax+b = 1 in R. Then there exists an idempotent e ∈ R such that ae+b ∈
U(R).

(3) Given ax+b = 1 in R. Then there exists an idempotent e ∈ R such that ex+b ∈
U(R).

Proof. (1)⇒(2) Given ax+b = 1 in R. Then bR+aR = R. So there exists an idem-
potent e∈ R such that ae+b ∈U(R), as asserted.
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(2)⇒(1) For any x,y ∈ R, we have
(−x)y+(1+xy)= 1. (41)

So we can find an idempotent e∈ R such that

(−x)e+(1+xy)∈U(R). (42)

That is,

xy−xe+1∈U(R). (43)

Therefore the result follows from Theorem 5.
(1)�(3) is obvious by the left-right symmetry of idempotent 1-stable range condi-

tion.

Theorem 9. The following are equivalent:
(1) R satisfies idempotent 1-stable range.
(2) R/J(R) satisfies idempotent 1-stable range and idempotents can be lifted modulo
J(R).

Proof. (1)⇒(2) Given anyx+J(R),y+J(R)∈ R/J(R). SinceR satisfies idempotent
1-stable range, by virtue of Theorem 5, there is an idempotent e ∈ R such that xy−
xe+1∈U(R). Thus we have

(
x+J(R))(y+J(R))−(x+J(R))(e+J(R))+(1+J(R))∈U ( R

J(R)

)
(44)

with

e+J(R)= (e+J(R))2 ∈ R
J(R)

. (45)

Using Theorem 5, we show that R/J(R) satisfies idempotent 1-stable range.
Given any a∈ R. We have aR+(−1)R = R. So there exists an idempotent e∈ R such

that a−e=u, and then a= e+u. Thus R is a clean ring. By [11, Prop. 1.8, Thm. 1.1], R
is exchange. Using [11, Cor. 1.3], we see that idempotents can be lifted modulo J(R).
(2)⇒(1) Given aR+bR = R. Then we have

(
a+J(R))( R

J(R)

)
+(b+J(R))( R

J(R)

)
= R
J(R)

. (46)

Since R/J(R) satisfies idempotent 1-stable range, there is an idempotent

e+J(R)∈ R
J(R)

(47)

such that
(
a+J(R))+(b+J(R))(e+J(R))∈U ( R

J(R)

)
. (48)

As idempotents can be lifted modulo J(R), we may assume e = e2 ∈ R. On the other
hand, there is some v ∈ R such that

v(a+be)−1∈ J(R). (49)

Hence a+be is left invertible, as desired.
Example 10. Every local ring satisfies idempotent 1-stable range.
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Proof. Since R is local, R/J(R) is a division ring. Let

S = R
J(R)

. (50)

Given aS+bS = S with a,b ∈ S. If a= 0, then bS = S. So a+b·1= b is right invertible
in S. If a ≠ 0, then a+b ·0 = a is a unit in S. By virtue of Corollary 3, we show that
S = R/J(R) satisfies idempotent 1-stable range. Since R is a local ring, idempotents
can be lifted modulo J(R). From Theorem 9, the result follows.

In general, every ring satisfying idempotent 1-stable range has stable range one, but
the converse is not true as the following shows.

Example 11. Let R = {m/n∈Q | 2 �n and 3 �m(m/n in lowest terms)}. Then R
is a semilocal ring, while idempotents do not lift modulo J(R). So R has stable range
one, but R does not satisfy idempotent 1-stable range from Theorem 9.

Let R be an associative ring with identity 1. Right R-module A is said to have finite
exchange property if for every right R-module K and any two decompositions,

K =M⊕N =
⊕
i∈I
Ai, (51)

where MR �A and the index set I is finite, there exist submodules A′i ⊆Ai such that

K =M⊕

⊕
i∈I
A′i


 . (52)

We call a ring R is a (right) weakly P -exchange ring if every right R-module has finite
exchange property (cf. [12]). It is well known that regular rings, right perfect rings and
weakly right perfect rings are all weakly P -exchange, while there still exist weakly P -
exchange rings which belong to none of the above classes ([12, Ex. 4.6]). R is called to
be exchange if right R-module R has finite exchange property. We know that regular
rings, π -regular rings, unital C∗-algebras of real rank zero, semiperfect rings, left
or right continuous rings and clean rings are all exchange. In [16], H. P. Yu proved
that every exchange ring with all idempotents central has stable range one. Now we
generalize this result as follows.

Theorem 12. Let R be a ring with all idempotents central. Then the following are
equivalent:
(1) R satisfies idempotent 1-stable range.
(2) R is a clean ring.
(3) R is an exchange ring.

Proof. (1)⇒(2) Given any a ∈ R. From aR+ (−1)R = R, we have an idempotent
e∈ R such that a+(−1)e=u, and then a= e+u. So R is clean.
(2)⇒(3) is clear from [11, Prop. 1.8, Thm. 2.1].
(3)⇒(1) Assume that R does not satisfies idempotent 1-stable range. By Proposition

2, there exist a,b ∈ R with aR+bR = R, while a+bp �∈U(R) for any p = p2 ∈ R.
Let Ω = {A |A is a two-sided ideal of R such that a+bq is not a unit modulo A for

any q = q2 ∈ R}. It is easy to check that Ω is a nonempty inductive set. By using Zorn’s
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lemma, we have a two-sided ideal Q of R such that it is maximal in Ω.
By the maximality of Q, we show that R/Q is indecomposable as a ring. Given any
x ∈ R/Q. Since R is exchange, so is R/Q. By [11, Thm. 1.1], there an idempotent
e∈ R/Q such that

e∈ x
(
R
Q

)
, 1−e∈ (1−x)

(
R
Q

)
, (53)

and an idempotent f ∈ R/Q such that

f ∈
(
R
Q

)
x, 1−f ∈

(
R
Q

)
(1−x). (54)

Since idempotents in R/Q can be lifted modulo Q, we may assume that e and f are
both central idempotents in R/Q. So e = 0 or e = 1 and f = 0 or f = 1. Thus we see
that x or 1−x is right invertible in R/Q. Similarly, x or 1−x is left invertible.
Assume that x ∈ R/Q is not invertible. If x is not left invertible in R/Q, then rx

is not left invertible for any r ∈ R/Q. Thus 1− rx is left invertible, whence rx is
left quasi-regular. This shows that x ∈ J(R/Q). If x is not right invertible in R/Q,
similarly to the discussion above, we have x ∈ J(R/Q). So J(R/Q) = {x ∈ R/Q | x
is not invertible in R/Q}. This implies that R/Q is local. By virtue of Example 10, we
claim that R/Q satisfies idempotent 1-stable range, a contradiction. Hence the result
follows.

Theorem 12 shows that exchange rings with all idempotents central satisfy idem-
potent 1-stable range. Now we give an exchange ring R with noncentral idempotents,
while it indeed satisfy idempotent 1-stable range.

Example 13. Let

R =
(
Z/2Z Z/2Z
0 Z/2Z

)
. (55)

By [17, Ex. 3.10], R is an exchange ring with noncentral idempotents. According to
Theorem 5, we directly verify that R satisfies idempotent 1-stable range.

Recall that a ring R is said to be strongly π -regular if every descending chain of right
ideals of the form

aR ⊇ a2R ⊇ a3R ⊇ ··· , a∈ R (56)

becomes stationary. It is well known that every strongly π -regular ring is clean. Now
we generalize this fact as follows.

Corollary 14. Let R be a strongly π -regular ring. If x,y ∈ R with xy =yx, then
there exists an idempotent e∈ R such that

xy+xe+1∈U(R). (57)

Proof. Given any x,y ∈ R with xy =yx. Let S be an additive subgroup generated
by the set

{
xmyn |m,n≥ 0

}
. (58)
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Then S is a commutative subring of R. By virtue of [3, Cor. 1.10], we can find a com-
mutative strongly π -regular subring T of R which contains S.
By Theorem 12, T satisfies idempotent 1-stable range with x,y ∈ T . Thus we can

find

f = f 2 ∈ T ⊆ R (59)

such that

x
(
y+1)−xf +1∈U(T)⊆U(R). (60)

Let e = 1−f . Then we have idempotent e = e2 ∈ R such that xy+xe+1 ∈ U(R), as
desired.

A ring R is said to be right (left) quasi-duo if every maximal right (left) ideal is two-
sided. By an argument of H. P. Yu, every weakly P -exchange ring with all idempotents
central is right (left) quasi-duo. In general, the converse is not true such as

R =
(
F F
0 F

)
, where F is a field. (61)

Now we give a theorem which guarantees the existence of one large class of rings
satisfying idempotent 1-stable range.

Theorem 15. Let R be a right or left quasi-duo weakly P -exchange ring. Then R
satisfies idempotent 1-stable range.

Proof. By [15, Prop. 2.1(1)], right primitive right quasi-duo rings are division. So
every right or left quasi-duo ring has primitive factors artinian. LetQ be a prime ideal
of R. Since R is a weakly P -exchange ring, so is R/Q. Similarly to [12, Prop. 4.1(2)], the
finite exchange property of R(N) forces J(R/Q) to be T -nilpotent. Assume that

0≠ a∈ J
(
R
Q

)
. (62)

Then there exist x1,x2, . . . ,xn, . . .∈ R/Q such that

ax1a �= 0, ax2ax1a �= 0, . . . , axn ···ax1a �= 0, . . . , (63)

a contradiction. Thus J(R/Q) = 0. So R/Q is an indecomposable exchange ring with
primitive factors artinian and J(R/Q) = 0. Using [17, Lem. 3.7], we claim that R/Q
is simple artinian. Thus R is an exchange ring with prime factors artinian, so it is
strongly π -regular. Using [17, Thm. 3.8], we see that R/J(R) is a regular ring with all
idempotents central. From Theorem 12, R/J(R) satisfies idempotent 1-stable range.
As idempotents can be lifted modulo J(R), we obtain the result from Theorem 9.

Recall that p(a)= a, p(a,b)= 1+ab and p(a,b,c)= a+c+abc for any a,b,c ∈ R.
W(R) denotes the subgroup of U(R) generated by

{
p(a,b,c)p(c,b,a)−1 | p(a,b,c)∈U(R),a,b,c ∈ R}, (64)
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and V(R) denotes the subgroup of U(R) generated by{
p(a,b)p(b,a)−1 | p(a,b)∈U(R),a,b ∈ R}. (65)

It is easy to verify that

p(a,b,c)= p(a,b)c+p(a),p(a,b,c)p(b,a)= p(a,b)p(c,b,a) (66)

and ( ∗ ∗
p(a,b,c) ∗

)
= B21(a)B12(b)B21(c). (67)

We end this note by investigatingWhitehead groups of rings withmany idempotents.

Theorem 16. Let R satisfy idempotent 1-stable range. Then

K1(R)� U(R)V(R)
. (68)

Proof. For any a,b,c ∈ R with p(a,b,c)∈U(R), we see that p(c,b,a)∈U(R). By
virtue of Theorem 5, there exists an idempotent e ∈ R such that 1+b(c−e) ∈ U(R).
Let c−e= t. Then c = t+e and 1+bt ∈U(R). Observing that( ∗ ∗
p(a,b,c) ∗

)
= B21(a)B12(b)B21(c)
= (B21(a)B12(b)B21(t))B21(e)
= B21(a)[1+bt,1]B21(t)B12(b)

[
1,(1+tb)−1]B21(e)

= [1+bt,1]B21(a+t+abt)B12(b)
[
1,(1+tb)−1]B21(e)

= [1+bt,(1+tb)−1]B21((1+tb)(a+t+abt))B12(b(1+tb)−1)B21(e)
=
( ∗ ∗
(1+tb)−1p((1+tb)(a+t+abt),b(1+tb)−1,e) ∗

)
.

(69)

Thus we have

p(a,b,c)= (1+tb)−1p((1+tb)(a+t+abt),b(1+tb)−1,e). (70)

Analogously to [10, Thm. 1.6], we know that

p(a,b,c)≡ (1+tb)−1p(e,b(1+tb)−1,(1+tb)(a+t+abt))(modV(R)
)

= (1+tb)−1(p(e,b(1+tb)−1)(1+tb)(a+t+abt)+p(e))
= (1+tb)−1(p(e,b(1+tb)−1)p(t,b)p(a,b,t)+p(e))
= (1+tb)−1(p(e,b(1+tb)−1)p(t,b,a)p(b,t)+p(e)).

(71)

Similarly, we can verify that

p(c,b,a)= p(e,(1+bt)−1b,(t+a+tba)(1+bt))(1+bt)−1
= (p(e,(1+bt)−1b)(t+a+tba)(1+bt)+p(e))(1+bt)−1
= (p(e,(1+bt)−1b)p(t,b,a)p(b,t)+p(e))(1+bt)−1.

(72)
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It is easy to check that

b
(
1+tb)−1 = (1+bt)−1b. (73)

Consequently, we have

(1+tb)p(a,b,c)≡ p(c,b,a)(1+bt)(modV(R)
)
. (74)

Thus

p(a,b,c)
(
p(c,b,a)

)−1 ∈ V(R). (75)

Therefore we conclude that

K1(R)� U(R)W(R)
� U(R)
V(R)

, (76)

as asserted.
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