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Abstract. In [3], Gilsdorf proved, for locally convex spaces, that every sequentially webbed
space satisfies the Mackey convergence condition. In the more general frame of topological
vector spaces, this theorem and its inverse are studied. The techniques used are double
sequences and the localization theorem for webbed spaces.
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1. Introduction. A web W in a topological vector space E is a countable family of
balanced subsets of E, arranged in layers. The first layer of the web consists of a
sequence (Ap : p = 1,2, . . .) whose union absorbs each point of E. For each set Ap
of the first layer, there is a sequence (Apq : q = 1,2, . . .) of sets, called the sequence
determined by Ap , such that

Apq+Apq ⊂Ap for each q; (1)
⋃{

Apq : q = 1,2, . . .
}
absorbs each point of Ap. (2)

Further, layers are made up in a corresponding way such that each set of the kth layer
is indexed by a finite row of k integers and, at each step, the above mentioned two
conditions are satisfied. Suppose that one chooses a set Ap from the first layer, then
a set Apq of the sequence determined by Ap and so on. The resulting sequence S =
(Ap,Apq,Apqr , . . .) is called a strand. Whenever we are dealing with only one strand,
we can simplify the notation by writing W1 = Ap, W2 = Apq, etc. Thus, S = (Wk) is a
strand, where, for each k, Wk is a set of the kth layer.
Let S = (Wk) be a strand. Consider xk ∈Wk and the series

∑∞
k=1xk. The space E is

webbed if the series
∑∞
k=1xk is convergent for any choice of xk ∈Wk; and E is strictly

webbed if
∑∞
k=n+1xk converges to some x ∈Wn for every n∈N and for any choice of

xk ∈Wk. The standard references for webs in a topological vector space are [5, 7, 8].
Let (E,τ) be a topological vector space. (xn)n ⊂ E is a Mackey null sequence if there

exists a sequence of real numbers (rn)n such that rn → ∞ and rnxn → 0 in E. We
say that (xn)n ⊂ E is Mackey convergent to x if (xn−x)n is a Mackey null sequence.
A topological vector space E satisfies theMackey convergence condition (M.c.c.) if every
null sequence is Mackey null.
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2. Double sequences. A completing double sequence in a topological vector space
(E,τ) is a family (Knj )n,j∈N of balanced subsets such that

(1) Knj ⊂Kn+1j for every n,j natural numbers;

(2) Knj+1+Knj+1 ⊂Knj for every n,j natural numbers;

(3)
⋃
n∈NKnj is absorbent in E for every j natural number;

(4) for every j0 ∈N, if xj ∈ Knj with j > j0, then
∑∞
j=j0+1xj converges in E to some

x ∈Knj0 .
Moreover, (Knj )j,n∈N is compatible with the topology if, for each zero neighborhood

U in E and for every natural number n, there exists a natural number J such that
Knj ⊂U for every j ≥ J.
For example, if E is sequentially complete and has a fundamental sequence of closed

bounded setsA1 ⊂A2 ⊂ ··· such that, for each bounded set B ⊂ E, there exists n0 ∈N
such that B ⊂An0 (this is the case if E is the strong dual of a metrizable space). In this
case, we define Knj = 2−jAn and it is easy to verify the properties (1) to (4), above. The
reader can find further information concerning double sequences in [6].
A topological vector space (E,τ), with a compatible completing double sequence

(Knj ), has a Sequential Double Sequence or the SDS property if, for each xm → 0 in E,
there exists n0 ∈N such that, for each j, there exists a natural number Mj such that
xm ∈Kn0j , for everym≥Mj .

Theorem 1. Let (E,τ) be a topological vector space with the SDS property. Then E
satisfies the Mackey convergence condition.

Proof. Let xm → 0 in (E,τ). Let (Knj ) be a sequential double sequence, then there
exists n0 ∈N such that, for every j, there exists a natural number Mj such that xm ∈
Kn0j , for every m ≥Mj . For n,j ∈ N, we have Knj+1 ⊂ (1/2)Knj ; so Knj+2 ⊂ (1/2)Knj+1 ⊂
(1/22)Knj . Consequently, for each l ∈ N, Knj+1 ⊂ (1/2l)Knj . Note that (1/2j) ≤ (1/j),
for every j ∈ N and Kn0j+j = Kn02j ⊂ (1/2j)Kn0j ⊂ (1/j)Kn0j . So, there exists M2j ∈ N
such that xm ∈ Kn02j ⊂ (1/2j)Kn0j ⊂ (1/j)Kn0j , for every m ≥ M2j ; which implies that

jxm ∈ Kn0j , for every m ≥ M2j . Analogously, for (j+1), there exists M2(j+1) ≥ M2j

such that (j+1)xm ∈Kn0j+1, for everym≥M2(j+1); and so, for all j ∈N. Define rm = j
if M2j ≤m<M2(j+1), then limm→∞ rm = limj→∞ j = ∞. Since (Knj ) is compatible with
the topology, we conclude that rmxm → 0.

From the theorem, a space with the SDS property is a space with the Mackey con-
vergence condition. In what follows, we study the conditions under which we have
an equivalence of these two properties. First, let us introduce another type of double
sequences: a topological vector space (E,τ), with a compatible completing double se-
quence (Knj ), has a quasi-Sequential Double Sequence or the qSDS property if, for each
xn → 0 in E, there exists n0 such that, for every j, there exists a natural number Mj

and a positive real number αj such thatm>Mj implies that xm ∈αjKn0j .
If αj = 1, for every j, in a qSDS, then it becomes on SDS. So, the qSDS is more general

than the SDS. The next proposition gives the condition for the equivalence.

Proposition 2. Let (E,τ) be a topological vector space with the Mackey conver-
gence condition. Then the SDS and the qSDS are the same.
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Proof. Let xm → 0 in a space (E,τ) with qSDS property. By the Mackey conver-
gence condition, there exists a scalar sequence rm → ∞ such that rmxm → 0. Then
there exists n0 such that rmxm ∈ αjKn0j , for some αj > 0 whenever m ≥Mj . Hence,

xm ∈ (αj/rm)Kn0j ⊂Kn0j ifm≥Mj and rm ≥αj .
Next, we see an example, where the qSDS property holds and the SDS property does

not.
Let (E,‖·‖) be a Banach space with a sequence (xm)m∈N weakly convergent to zero

and not norm convergent. Let B be the closed unit ball in E. For each n,j ∈ N, let
Knj = 2−jB. Then (Knj ) is a compatible completing double sequence with respect to the
norm topology and, consequently, with respect to any weaker topology τ , especially
the weak topology since the map i : (E,‖ · ‖) → (E,τ) is continuous. Now, (xm)m∈N
is not contained in Knj , since K

n
j are neighborhoods in the norm topology such that⋂

j Knj = {0} and, by [4, Ex. 4] and [4, cor. of Thm. 3], (E,σ) does not have the M.c.c.
Nevertheless, (xm)m∈N is boundedwith respect to both the weak and norm topologies.
So, for every Knj , there exists αj such that (xm)m ⊂αjKnj .
We have the following implication: SDS �⇒ qSDS. This implication can be reversed if

the space has the M.c.c. Furthermore SDS �⇒M.c.c. So, we have the following corollary:

Corollary 3. Let E be a topological vector space with a compatible completing
double sequence. Then E has SDS property if and only if the qSDS property and M.c.c.
hold.

3. Mackey convergence and sequentially webbed spaces. E is sequentially webbed
if it has a compatible web W such that, for every null sequence (xn)n∈N in E, there
exists a finite collection of strands

{(
W(1)
k
)
, . . . ,

(
W(m)
k

)}
of W such that, for every nat-

ural number k, there exists Mk such that n ≥Mk implies xn ∈
⋃m
i=1W

(i)
k . Gilsdorf [3]

proved two relations between the M.c.c. and the sequentially webbed spaces in the
locally convex case.
Here, we generalize these results. One to topological vector spaces and the other

to locally r-convex spaces. In fact, the concept of webbed spaces, introduced here,
does not use local convexity. Note that in this case, in each strand, we have 2Wk+1 ⊂
Wk+1+Wk+1 ⊂Wk so that Wk+1 ⊂ 2−1Wk, and then following the proof of [3, Thm. 12],
we have: if (E,τ) is a sequentially webbed topological vector space, then E has the M.c.c.
In order to obtain a converse of this result, we need to use a localization theorem

[5, Thm. 5.6.3.].
Let 0 < r ≤ 1 fixed. A ⊂ E is r-convex if λA+µA ⊂ A, for every λ,µ ≥ 0 such that

λr +µr = 1. Moreover, if A is balanced, we say that A is absolutely r-convex. If r = 1,
we have the usual convexity definition.
For U ⊂ E balanced and absorbent, let qu : E → R+ be the Minkowski functional

defined by x → inf{ρ > 0 : x ∈ ρU}. qu is an r-seminorm if qu(x+y)r ≤ qu(x)r +
qu(y)r . Furthermore, if q−1u (0) = 0, it is called an r-norm. (E,τ) is locally r-convex if
it has a fundamental system of zero neighborhoods formed by r-convex sets.
Now, we can use the EB spaces for locally r-convex spaces. (E,τ) locally r-convex

space is locally r-Baire if, for every bounded set A ⊂ E, there exists B absolutely r-
convex and bounded such that A⊂ B and the space (EB,ρB) is a Baire space, where EB
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is the span of B and ρB is the topology generated by the r-norm qrB .

Theorem 4. Let (E,τ) be a locally r-Baire locally r-convex space and strictly webbed.
If E satisfies the Mackey convergence condition, then E is sequentially webbed.

Proof. LetW be a strict web in E;(xn)n ⊂ E a null sequence, and rn→∞ a sequence
of real numbers such that rnxn → 0 in E. Let A = {rnxn : n ∈N}, A is bounded, then
there exists a bounded absolutely r-convex set B such that (EB,ρB) is a Baire space
and A is a bounded set in EB . The identity map i : EB → E is continuous. Hence, by
the localization theorem, i has a closed graph and there exists a strand (Wk) such
that i−1(Wk) = EB ∩Wk is a zero neighborhood in (EB,ρB) for every k. Finally, A ⊂
αk(EB∩Wk) ⊂ αkWk for some αk, a positive real number. So, rnxn ∈ αkWk and xn ∈
(αk/rn)Wk ⊂Wk, for n sufficiently large such that |(αk/rn)| ≤ 1.
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