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THE DIOPHANTINE EQUATION x2+2k =yn, II
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(Received 19 June 1998)

Abstract. New results regarding the full solution of the diophantine equationx2+2k=yn
in positive integers are obtained. These support a previous conjecture, without providing
a complete proof.
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The first paper in the series [2] considered the diophantine equation x2+2k = yn,
where n≥ 3 and k was supposed odd, and demonstrated that there were exactly three
families of solutions. The same problem with k even appears to be of rather greater
difficulty, and was considered by Arif and Abu Muriefah [1]. They made the following
conjecture:

Conjecture. If k = 2m, the diophantine equation x2+2k = yn has precisely two
families of solutions, given by x = 2m for allm and by n= 3, x = 11.23M ifm= 3M+1.
This conjecture seems entirely plausible, but the authors of [1] could not prove it;

indeed, there remained 30 cases withm< 100 for which they could not exclude other
solutions. It is the object of this note to derive further results to remove all those open
cases, but the goal of proving the conjecture remains infuriatingly just out of reach.
As demonstrated in [1], the conjecture would follow if it could be demonstrated that

the equation

−1=
1/2(p−1)∑
r=0

( p
2r +1

)
ap−2r−1

(−22m)r (1)

had no solution in which n= p ≡ 7(mod8), an odd prime, a is an odd integer divisible
by 3 andm is divisible by an odd power of 3. It is also shown there that ifm is even
but not divisible by 5, then (1) has no solution and that if (m,7) = 1, then it suffices
to consider p ≡ 7(mod24).

Definition. For each prime q, define λ= λ(q) and µ = µ(q) by
(a) λ is the least positive integer such that 2λ ≡ 1(modq);
(b) 2λ = 1+µq.

Then an ordinary prime q is one with µ �≡ 0(modq).

Remark 1. Of course λ | (q− 1). All primes < 3.109 are known to be ordinary
except 1093 and 3511.
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Lemma 1. For any solution of (1), every prime q dividing a+2m and |a−2m| satisfies
q ≡ ±1(mod8) and λ ≡ 1(mod2). In particular, a ≡ ±1(mod8). For (1) gives modulo
a2−22m,

−1≡ ap−1
1/2(p−1)∑
r=0

( p
2r +1

)
(−1)r = ap−1 (1+i)

p−(1−i)p
2i

= ap−1 ·2p/2 sin pπ
4
=−(2a2)1/2(p−1),

(2)

since p ≡ 7(mod8). Hence, 2 is a quadratic residue modulo q, i.e., q ≡±1(mod8). Also,
1 ≡ (22m+1)1/2(p−1) ≡ 2(2m+1)1/2(p−1)(modq), whence, λ|(2m+1)1/2(p−1) and so λ
must be odd.

Remark 2. Of course all primes ≡ 7(mod8) have odd λ, but this result eliminates
many primes ≡ 1(mod8) as possible divisors of a±2m, e.g., 17, 41, 97 but not, e.g.,
73, 89. It is actually surprising how few primes ≡ 1(mod8) survive this test; there are
only 15 such below 3,000.

Corollary 1. There is no solution unless p ≡ 15(mod16).

Proof. For a ≡ ±1(mod8), a2 ≡ 1(mod16) and then (1) gives −1 ≡ pap−1 ≡
p(mod16).

Lemma 2. If q|a then if 2ρ‖λ, 2ρ−1|m.
Proof. For 2m(p−1) ≡ 1(modq) and so λ|m(p−1), whence the result since 2‖(p−

1).

Theorem 1. For any solution of (1), if q �= p is an ordinary prime dividing a, then
also q|m. In fact, if qα‖a, thenm≡ 2λµνpq2α−1(modq2α), where (ν|q)= 1.

Proof. We have from (1)

2m(p−1)−1= a2
{(p

2

)
2m(p−3)−a2

(p
4

)
2m(p−5)+···

}
, (3)

and so q2α|2m(p−1)−1. Since q is an ordinary prime, q2α−1|m(p−1).
First, suppose that q � (p−1). Then we find that the second factor on the right-hand

side of (3) is not divisible by q since q �= p, and so q2α‖2m(p−1)−1. Thus, since q is
an ordinary prime, q2α−1‖m(p−1), and so q2α−1‖m. Now, since 2λ = 1+µq, we find
that 2λq

2α−1 ≡ 1+µq2α(modq2α+1), and then if t =m(p−1)/λq2α−1, 2m(p−1)−1 ≡
(1+ µq2α)t − 1 ≡ µtq2α(modq2α+1), whereas modulo q2α+1, the right-hand side of
(3), is congruent to νq2α

(p
2

)
, where ν is a quadratic residue modulo q. Thus, m(p−

1)µ/λq2α−1 ≡ νp(p−1)/2(modq) and the result follows as q � (p−1).
Secondly, if q|(p−1), suppose that qκ‖(p−1)with p = 1+rqκ . Then the second fac-

tor on the right-hand side of (3) is congruent to rqκ ·2m(p−3)−1 modulo qκ+1, whereas
the left-hand side ≡ µq2α+κ · (m(p − 1))/(λq2α+κ−1) ≡ µq2α+κ · (mr)/(λq2α−1)
(modq2α+κ+1), and the result follows as before.

Corollary 2. There can be no solution unlessm≡ 32α−1p(mod32α), α≥ 1.

Proof. For 3|a, and so with q = 3, λ= 2, µ = 1, ν = 1.
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Theorem 2. Solutions of (1) are possible only if either

m= 32α−1(24K+13) and p ≡ 127(mod144) (4)

or

m≡ 0(mod1020) and 5|a and 17|a. (5)

Proof. (a) Ifm ≡ 1(mod4), then 22m ≡ 4≡−82(mod17) and then (1) gives −1≡
((a+ 8)p − (a− 8)p/(16))(mod17), or (a+ 8)15 − (a− 8)15 ≡ 1(mod17) in view of
Corollary 1. Now, neither a ≡ ±8(mod17) satisfy this, whereas, for other values of
a, we should obtain (a2 − 82) ≡ (a− 8)(a+ 8)16 − (a+ 8)(a− 8)16 ≡ 1(mod17) or
a2 ≡−3(mod17) which is impossible.
(b) Ifm≡ 0(mod4), then 22m ≡ 1≡−42(mod17) and then (1) gives −1≡ ((a+4)p−

(a− 4)p)/(8) ≡ ((a+ 4)15 − (a− 4)15)/(8)(mod17). Here, neither a ≡ ±4(mod17)
satisfy this, whereas, for other values of a, we require −8(a2−42)≡ (a−4)(a+4)16−
(a+4)(a−4)16 ≡−8(mod17) or 17|a.
Similarly, 22m ≡ 1 ≡ −22(mod5) and then (1) gives −1 ≡ ((a+2)3− (a−2)3)/(4)

(mod5), whence, 5|a. Thus, in this case, m must be divisible by 3, 5, and 17 as well
as 4.
(c) Ifm = 6(mod8), thenm ≡ 6(mod24) and since λ(97) = 48, we find that 22m ≡

22 ≡ −472(mod97) and so, similarly, we find that we must have −1 ≡ ((a+47)p −
(a−47)p)/(94)(mod97) and a simple calculation shows that this cannot occur for
any p ≡ 15(mod16), and so this case cannot arise.
(d) If m ≡ 2(mod8), then m ≡ 18(mod24) and now 22m ≡ −332(mod97). We find

that this can occur for p ≡ 15(mod16) only if p ≡ 31(mod96) and, in particular, only
if p ≡ 1(mod3).
Similarly, we find that 22m ≡ ±9(mod193), and then this can occur for p ≡ 15

(mod16) only if p ≡ 2(mod3). Thus, this case is impossible.
(e) Ifm≡ 3(mod4), i.e.,m≡ 3(mod12), then 22m ≡−1(mod13) and, as above, this

yields, from (1), (a+1)p−(a−1)p ≡−2(mod13) which is impossible if p ≡ 2(mod3),
i.e., p ≡ 11(mod12) since again neither a ≡ ±1(mod13) satisfy this, whereas, for
other values of a, we should obtain −2(a2−1) ≡ (a−1)(a+1)12−(a+1)(a−1)12 ≡
−2(mod13) which is impossible.
So, we are left with p ≡ 31(mod48), m ≡ 3(mod12), i.e., m ≡ 3,15,27,39,51, or

63(mod72). Of these values, 15 and 51 can be dismissed in view of the corollary to
Theorem 1, 3 and 27 are impossible modulo 577 by a calculation similar to those
employed above since 2144 ≡ 1(mod577). This leaves just m ≡ 39 or 63(mod72),
both of which are ≡ 7(mod8), and modulo 73 we find that either of them requires p ≡
1(mod9). Thus, in view of the corollary to Theorem 1, we must havem= 32α−1(24K+
13) with p ≡ 127(mod144).

Lemma 3. A solution of (1) can occur only if either

p ≡ 1(mod9) (6)

or

p ≡ 4 or 7(mod9), 73 | a, 73 |m; (7)
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or

p ≡ 2(mod3), 73 | a, 73 |m, 9 | a, 27 |m. (8)

Proof. Since 29 ≡ 1(mod73) and 3|m, it follows that 2m ≡ 1 or 8 or 64(mod73)
and then we find as above that either 73|a or p ≡ 55(mod72). The latter gives the
first case. Since 73 is an ordinary prime, by Theorem 1, the former gives 73|m, and
since λ(73)= 9, we see, as in Lemma 2, that 9|m(p−1), and so unless p ≡ 1(mod3),
9|m and then the result follows by Theorem 1 and its corollary.

Using this, we see that the only values ofm under 1000 that are still open for odd x
are 39, 111, 183, 255, 327, 351, 399, 471, 543, 615, 687, ,759, 831, 903, and 975, for
all of which the only possible p satisfy p ≡ 127(mod144). The third case of Lemma 3
is most unlikely to occur for it would requirem to be even, and then it can be shown
thatm would have to be divisible by 22 ·33 ·5·7·13·37·73·241·433.
Finally to prove that there are no solutions other than those of the conjecture with

m < 100, it merely remains to check that (1) has no solutions with m = 39. This is
accomplished by a calculation using the methods of [3]. We omit the details.

References

[1] S. A. Arif and F. S. Abu Muriefah, On the diophantine equation x2+2k = yn, Internat. J.
Math. Math. Sci. 20 (1997), no. 2, 299–304. CMP 97 11. Zbl 881.11038.

[2] J. H. E. Cohn, The diophantine equation x2+2k =yn, Arch. Math. (Basel) 59 (1992), no. 4,
341–344. MR 93f:11030. Zbl 770.11019.

[3] , The diophantine equation x2 + C = yn, Acta Arith. 65 (1993), no. 4, 367–381.
MR 94k:11037. Zbl 795.11016.

Cohn: Department of Mathematics, Royal Holloway University of London, Egham,
Surrey TW20 0EX, England
E-mail address: J.Cohn@rhbnc.ac.uk

http://www.emis.de/cgi-bin/MATH-item?881.11038
http://www.ams.org/mathscinet-getitem?mr=93f:11030
http://www.emis.de/cgi-bin/MATH-item?770.11019
http://www.ams.org/mathscinet-getitem?mr=94k:11037
http://www.emis.de/cgi-bin/MATH-item?795.11016

