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Abstract. The generalized forced Boussinesq equation, utt−uxx+[f (u)]xx+uxxxx =
h0, and its periodic traveling wave solutions are considered. Using the transform z =
x−ωt, the equation is converted to a nonlinear ordinary differential equationwith periodic
boundary conditions. An equivalent relation between the ordinary differential equation
and a Hammerstein type integral equation is then established by using the Green’s function
method. This integral equation generates compact operators in a Banach space of real-
valued continuous periodic functions with a given period 2T . The Schauder’s fixed point
theorem is then used to prove the existence of solutions to the integral equation. Therefore,
the existence of nonconstant periodic traveling wave solutions to the generalized forced
Boussinesq equation is established.
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1. Introduction. In the 1870’s, Boussinesq derived some model equations for the
unidirectional propagation of small amplitude long waves on the surface of water
[2]. These equations possess special traveling wave solutions called solitary waves.
Boussinesq’s theory was the first to give a satisfactory and scientific explanation of
the phenomenon of solitary waves discovered by Scott Russell [8].
The original equation obtained by Boussinesq is not the onlymathematicalmodel for

small amplitude, planar, and undirectional long waves on the surface of shallow water.
Different choices of the independent variables and the possibilty of modifying lower
order terms by the use of the leading order relationships can lead to a whole range
of equations [1]. One of them is the well-known Korteweg-de Vries equation (referred
to KdV equation henceforth). In a recent paper, Schneider proved that under certain
conditions, solutions of the Boussinesq equation can be split up into two approximate
solutions of KdV equation [7].
Twenty years ago, in an impressive survey on the KdV equation, Miura listed seven

open problems on that equation [6]. The seventh open problem is on the forced KdV
equation. In 1995, Shen derived the 1-dimensional stationary forced KdV equation of
the form λut+αuux+βuxxx = hx for the long nonlinear water waves flowing over
long bumps, and proved the existence of positive solitary wave solutions to the equa-
tion with boundary conditions u(±∞) = u′(±∞) = 0 [9]. In a recent paper [3], Chen
proved the existence of traveling wave solutions to the generalized forced Kadomtsev-
Petviashvili equation which is a 2-dimensional generalization to the equation obtained
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by Shen.
In this paper, we consider an equation of the form

utt−uxx+
[
f(u)

]
xx+uxxxx = h0, (1.1)

where u = u(t,x) and f(u) is a C2 function in its argument. This equation is also
called the generalized forced Boussinesq equation.
We shall prove an existence theorem of periodic traveling wave solutions to this

equation following the idea of Liu and Pao [5], and Chen and He [4].
The plan of this paper is as follows. In Section 2, the generalized forced Boussinesq

equation is transformed to an ordinary differential equation with periodic boundary
conditions. We then apply the Green’s function method to derive a nonlinear integral
equation equivalent to the ordinary differential equation. In Section 3, an existence
theorem of solutions to the integral equation is proved. Therefore, the main result,
the existence of periodic traveling wave solutions to the generalized forced Boussi-
nesq equation is established. Furthermore, we note that the periodic traveling wave
solutions are infinitely differentiable.

2. Formulation of the problem. We start from the generalized forced Boussinesq
equation of the form

utt−uxx+
[
f(u)

]
xx+uxxxx = h0, (2.1)

where the function f is C2 in its argument and h0 is a nonconstant function of t and
x. We are interested in the periodic traveling wave solutions of the form u(x,t) =
U(z)=U(x−ωt), where ω> 0 is the wave speed and z = x−ωt is the characteristic
variable. In this paper, we only consider the case that h0(x,t)= h(z) is a 2T -periodic
continuous function of z, where T is a preassigned positive number. Substituting the
U(z) into equation (2.1) then leads to the fourth order nonlinear ordinary differential
equation

U(4)(z)= CU"(z)−[f (U(z)
)]
"+h(z), (2.2)

where C = (1−ω2). To obtain nonzero, nonconstant, periodic solutions of this equa-
tion, we impose the following boundary conditions

U(n)(0)=U(n)(2T), n= 0,1,2,3, (2.3)
∫ 2T

0
U(z)dz = 0. (2.4)

It is obvious that any solution U(z) of the boundary value problem consisting of
equations (2.2), (2.3), and (2.4) can be extended to a 2T -periodic travelingwave solution
to the original Boussinesq equation (2.1).
Integrating both sides of equation (2.2) with respect to z twice and using equations

(2.3) and (2.4) yield

U"(z)−CU(z)= E−[f (U(z)
)−H(z)

]
, (2.5)

U(n)(0)=U(n)(2T), n= 0,1, (2.6)

where E = ∫ 2T0 [f (U(z))−H(z)]dz/2T , and H(z) is a 2T -periodicfunction of z such
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that H"(z) = h(z). Conversely, integrating both sides of equation (2.5) from 0 to 2T
and using equation (2.6) will give us equation (2.4), and direct differentiations of equa-
tion (2.5) will give us equations (2.2) and (2.3). Therefore, we have proved the following
theorem by noting from equation (2.5) that U ∈ C2[0,2T] implies U ∈ C4[0,2T] be-
cause f is a C2 function of its argument.

Theorem 1. Suppose C ≠ 0, a function U(z) is a solution to the boundary value
problem equations (2.2), (2.3), and (2.4) if and only if it is a solution to the boundary
value problem consisting of equations (2.5) and (2.6).

From now on we denote the function f(U(z))−H(z) on the right hand side of
equation (2.5) by F(U(z)) and only consider the two cases:
(1) C > 0,
(2) C < 0,

but −C ≠ (kπ/T)2 with k being any integer. Treating the right hand side of equation
(2.5) as a forcing term and using the Green’s function method [5, 11, 10], the bound-
ary value problem equations (2.5) and (2.6) can be converted to a nonlinear integral
equation of the form

U(z)=
∫ 2T

0
Ki(z,s)F

(
U(s)

)
ds ∀z ∈ [0,2T], (2.7)

where the kernels Ki, i= 1,2, are defined as follows:
(1) When C > 0, we denote λ1 =

√
C , then

K1(z,s)= coshλ1
(
T −|z−s|)

2λ1 sinhλ1T
− 1

2λ21T
∀z,s ∈ [0,2T]. (2.8)

(2) When C < 0 but −C ≠ (kπ/T)2 with k being any integer, let λ2 =
√−C , then

K2(z,s)= cosλ2
(
T −|z−s|)

2λ2 sinλ2T
− 1

2λ22T
∀z,s ∈ [0,2T]. (2.9)

Lemma 1. The kernels K1 and K2 have the following properties:

Ki(0,s)=Ki(2T ,s) ∀s ∈ [0,2T], i= 1,2, (2.10)

Ki(z,2T −s)=Ki(2T −z,s) ∀z,s ∈ [0,2T], i= 1,2, (2.11)
∫ 2T

0
Ki(z,s)ds = 0 ∀z ∈ [0,2T], i= 1,2. (2.12)

Proof. Straightforward computations from the definitions of the K1(z,s) and
K2(z,s) given in equations (2.8) and (2.9).

Theorem 2. A function U(z) is a solution of the boundary value problem consisting
of equations (2.5) and (2.6) if and only if it is a solution of the integral equation (2.7).

Proof. The if part can be proved by direct differentiations of equation (2.7) and
the only if part is based on the Green’s function method by treating the right hand
side of equation (2.5) as a nonhomogeneous term.
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3. Existence theorem. It is seen from Theorems 1 and 2 that U(z) is a solution to
the integral equation (2.7) if and only if it is a solution to the boundary value problem
consisting of equations (2.2), (2.3), and (2.4). Therefore, to show the existence of 2T -
periodic traveling wave solutions to the generalized forced Boussinesq equation it is
sufficient to show that solutions to equation (2.7) exist.
We define C2T as a collection of real-valued continuous functions, v(z), on [0,2T]

such that v(0)= v(2T). Equip C2T with the sup norm ‖·‖ as ‖v‖ = sup0≤z≤2T |v(z)|,
for each v ∈ C2T , (C2T ,‖·‖) then becomes a Banach space.
We now define the operators �i, i= 1,2, on C2T as

�iv(z)=
∫ 2T

0
Ki(z,s)F

(
v(s)

)
ds ∀v ∈ C2T , (3.1)

where the kernels Ki,i= 1,2, are defined in equations (2.8), (2.9), and

F(v(s))= f(v(s))−H(s).

Notice that the operator �i depends on T and λi,i= 1,2.
We shall show that there exists an r > 0 such that ‖�iv‖ ≤ r for any nontrivial

function v ∈ B(0,r ) ⊆ C2T , i = 1,2. This implies that the equation �iv = v has at
least one solution in B(0,r ). And hence, the existence of solutions to equation (2.7)
is therefore established. This, in turn, leads to the existence of 2T -periodic traveling
wave solution U(z) to the generalized forced Boussinesq equation.
A consequence of Lemma 1 can be stated now.

Lemma 2. Let v be an element of C2T . If v(z) = v(2T − z) for z ∈ [0,2T], then
�iv(z)=�iv(2T −z),i= 1,2.

We define B(0,r ) as a bounded ball in C2T with r > 0, then there exists an M > 0
such that M = sup[‖F(v)‖ : v ∈ B(0,r )]. We are now ready to prove the following
theorem:

Theorem 3. �i : C2T → C2T , i = 1,2, is a compact operator. If 2M/λ2i ≤ r , i = 1,2,
then �i, i = 1,2 maps B(0,r ) into itself, and hence, the integral equation (2.7) has at
least one solution in B(0,r ).

Proof. First we show that �i : C2T → C2T , i= 1,2. Since it is obvious from Lemma 1
that �iv(0)=�v(2T) for each v ∈ C2T , i= 1,2, it suffices to show that �iv , i= 1,2,
is continuous on [0,2T].
Let v be an element in C2T , we have

d�1v(z)
dz

= −1
2sinhλ1T

∫ z

0
sinhλ1(T −z+s)F

(
v(s)

)
ds

+ 1
2sinhλ1T

∫ 2T

z
sinhλ1(T +z−s)F

(
v(s)

)
ds,

(3.2)

d�2v(z)
dz

= 1
2sinλ2T

∫ z

0
sinλ2(T −z+s)F

(
v(s)

)
ds

+ −1
2sinλ2T

∫ 2T

z
sinλ2(T +z−s)F

(
v(s)

)
ds.

(3.3)
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The existence of d�1v/dz and d�2v/dz implies that both �1v and �2v are contin-
uous on [0,2T], and hence, we have proved �i : C2T → C2T , i= 1,2.
Let S be any bounded subset of C2T , i.e., there exists an L0 > 0 such that ‖v‖ ≤ L0

for all v ∈ S. Then since f is C2 in its argument, there exists an M0 > 0 such that

‖F(v)‖ = sup
0≤z≤2T

∣∣F(v(z)
)∣∣≤ sup

−L0≤ω≤L0
|F(ω)| ≤M0 ∀v ∈ S. (3.4)

Since sinλ2T ≠ 0 and max0≤z≤2T
∫ 2T
0 |Ki(z,s)|ds ≤ 2/λ2i , i= 1,2 [10], we can obtain the

following results from equations (3.1), (3.2), and (3.3)

‖�iv‖ ≤ 2M0

λ2i
∀v ∈ S, i= 1,2, (3.5)

∥∥∥∥d�iv
dz

∥∥∥∥≤ TM0

τi
∀v ∈ S, i= 1,2, (3.6)

where τ1 = 1 and τ2 = |sinλ2T |. Thus, �iS, i = 1,2, is uniformly bounded and equi-
continuous, and by the Ascoli-Arzela theorem both �1 and �2 are compact operators
from C2T into C2T .
To show that �i, i = 1,2, has a fixed point in B(0,r ) when 2M/λ2i ≤ r , i = 1,2, we

write

|�iv(z)| =
∣∣∣∣
∫ 2T

0
Ki(z,s)F

(
v(s)

)
ds
∣∣∣∣

≤
∫ 2T

0

∣∣Ki(z,s)
∣∣ ∥∥F(v(s)

)∥∥ds

≤ 2M
λ21

≤ r , ∀v ∈ B(0,r ).

(3.7)

This implies that ‖�iv‖ ≤ r for all v ∈ B(0,r ), i = 1,2. And hence, �i, i = 1,2,
maps B(0,r ) into itself. By the Shauder’s fixed point theorem we have proved that �i,
i = 1,2 has a fixed point in B(0,r ). This means that the equation �iv = v , i = 1,2,
has at least a solution v(z) which is continuous on [0,2T]. This, in turn, implies that
equation (2.7) has a solution for each case of C > 0 and C < 0 with −C ≠ (kπ/T)2.

It is worth nothing that as long as
∫ 2T
0 Ki(z,s)H(s)ds ≠ 0, i = 1,2, by Theorem 3,

we see that the equation �iv = v , i = 1,2, has at least one nonconstant solution
v(z) in B(0,r ). This solution v(z) is infinitely differentiable on (0,2T) since �iv is
differentiable on (0,2T). The extension of the v(z) to a 2T -periodic function V(z)
provides an infinitely differentiable nonconstant 2T -periodic traveling wave solution
to the generalized forced Boussinesq equation.
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