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ON THE DISTRIBUTION OF RAMIFICATION
POINTS IN TRIGONAL CURVES
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Abstract. We study the distribution of the total and ordinary ramification points of a
trigonal curve over the intersection of this curve with rational curves on a rational nor-
mal scroll. We show, among other results, that these intersections may contain all the
ramification points of the trigonal curve.
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1. Introduction. Trigonal curves are canonically immersed in rational normal
scrolls, which may be viewed as the join of two rational normal curves lying in hy-
perplanes of complementary dimension. The purpose of this note is to find relations
and bounds for the number of total and ordinary ramification points of a trigonal
curve that lie on the intersection with a rational curve on the scroll. The motivation
comes from results obtained by Coppens [2] relating the number of total ramification
points having one or other Weierstrass sequence in a trigonal curve. In a more geo-
metrical approach to that question, Stöhr and Viana [4] showed that a ramification
point have one or other Weierstrass sequence depending on whether or not it lies on
a certain rational curve (the directrix of the scroll). We use this same approach in what
follows. This simplifies the treatment of the question and adds a geometrical meaning
to the results (cf. [3]).

2. Preliminaries. Let C be a nonsingular trigonal curve of genus g ≥ 5 defined over
an algebraically closed field k of a characteristic zero and canonically embedded in
Pg−1(k). We know from [1] that such a curve lies in a rational normal scroll Smn that
may be described as the join of the rational normal curves

D := {(an : an−1b : ··· : bn : 0 : ··· : 0)∈ Pm+n+1(k) | (a : b)∈ P1(k)} (1)

and

E := {(0 : ··· : 0 : am : am−1b : ··· : bm)∈ Pm+n+1(k) | (a : b)∈ P1(k)}, (2)

where m and n are positive integers satisfying m ≤ n, (n−2)/2 ≤m ≤ 2n+2 and
m+n+2= g.
We denote the lines of the ruling by

Lb/a := (an : an−1b : ··· : bn : 0 : ··· : 0),(0 : ··· : 0 : am : am−1b : ··· : bm) (3)

with b/a ∈ P1(k) = k∪ {∞} and we observe that the following sets form an open
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covering for Smn.

U0 := Smn\(L∞∪E)=
{
(a0 : ··· : an : a0b : ··· : amb) | (a,b)∈ k2

}
, (4)

Un := Smn\(L0∪E)=
{
(an : ··· : a0 : amb : ··· : a0b) | (a,b)∈ k2

}
, (5)

Un+1 := Smn\(L∞∪D)=
{(
a0b : ··· : anb : a0 : ··· : am) | (a,b)∈ k2

}
, (6)

Ug−1 := Smn\(L0∪D)=
{(
anb : ··· : a0b : ··· : am : ··· : a0) | (a,b)∈ k2

}
. (7)

Note that each of these sets is isomorphic to the affine plane k2 and, in [4], the
following theorem was proved.

Theorem [1, Thm. 1.1]. Associating to each plane curve the Zariski closure of its
image under the local parametrization k2↩ Smn, defined by

(a,b) � �→ (
a0 : ··· : an : a0b : ··· : amb

)
, (8)

one obtains a bijective correspondence between the canonical curves on the scroll Smn ⊂
Pm+n+1(k) and the affine plane curves given by the irreducible equation

c3(X)Y 3+c2(X)Y 2+c1(X)Y +c0(X)= 0 (9)

satisfying c3(X)≠ 0, degci(X)≤ di for each i= 0,1,2,3 and degci(X)= di for at least
one i, where d0 = 2n−m+2, d1 =n+2, d2 =m+2, and d3 = 2m−n+2.
In what follows, we always denote an equation as the above by f0(X,Y) = 0 and

we call C0 the plane curve defined by it. Observe that if C is the correspondent trig-
onal curve in Smn, then C0 is isomorphic to the affine curve C ∩U0. Furthermore,
there is a plane curve which we call Cn that is isomorphic to C∩Un under the local
parametrization of Smn defined by (a : b)� (an : ··· : a0 : amb : ··· : a0b). Denoting
by fn(X,Y) = 0 the equation of Cn, we must have fn(X,Y) = c̃3(X)Y 3+ c̃2(X)Y 2+
c̃1(X)Y + c̃0(X), where c̃i(X) := ci(1/X)X(2n−m+2−i(n−m)), i= 0,1,2,3 (to see that, ob-
serve that if (a0 : ··· : an : a0b : ··· : amb) = (ãn : ··· : ã0 : ãmb̃ : ··· : ã0b̃), then
ã = 1/a and b̃ = b/an−m). Similarly, we denote by fn+1(X,Y) = 0 the equation of
the plane curve Cn+1 which is isomorphic to the affine curve C ∩Un+1 through the
local parametrization of Smn, defined by (a,b)� (a0b : ··· : anb : a0 : ··· : am), and
as above we may conclude that fn+1(X,Y) = c0(X)Y 3 + c1(X)Y 2 + c2(X)Y + c3(X).
Finally, we denote by fg−1(X,Y) = 0 the equation of the plane curve Cg−1 which is
isomorphic to the affine curve C ∩Ug−1 through the local parametrization of Smn,
defined by (a,b) � (anb : ··· : a0b : a0 : ··· : am), and one may easily verify that
fg−1(X,Y)= c̃0(X)Y 3+ c̃1(X)Y 2+ c̃2(X)Y + c̃3(X).
A point P ∈ C is a ramification point with respect to the trigonal morphism of C if

the line L of the scroll passing through P is the tangent line at P , and the ramification
index eP is the intersection multiplicity of C and L at P . We say that P is a total rami-
fication point (respectively, an ordinary ramification point) when eP = 3 (respectively,
when eP = 2). Observe that maps k2 ↩ U0 and k2 ↩ Un+1 (respectively, k2 ↩ Un and
k2 ↩ Ug−1) take the vertical line X = a of k2 into La (respectively, into L1/a), a ∈ k.
Thus, we call a point of Ci(i= 0,n,n+1,g−1) a ramification point if it has a vertical
tangent line and we classify it as a total ramification point or an ordinary ramification



ON THE DISTRIBUTION OF RAMIFICATION POINTS . . . 491

point according to its intersection multiplicity with the tangent line as above. Equiva-
lently, a point P = (a,b)∈ Ci(i= 0,n,n+1,g−1) is a total (respectively, an ordinary)
ramification point if and only if ordP (x−a)= 3 (respectively, ordP (x−a)= 2), where
x is the rational function of k(Ci) = k(C), defined by (a,b)→ a, and ordP (h) is the
order at P of the rational function h∈ k(Ci).
We end this section with the following observations.

Remark 2.1. It is easy to check the following facts:
(i) If (a,b) is a total ramification point of C0, then c3(a)≠ 0.
(ii) A point (a,0)∈ k2 is a total (respectively, an ordinary) ramification point of C0

if and only if c0(a)= 0, c1(a)= 0 and c2(a)= 0 (respectively, c2(a)≠ 0).
(iii) A point (a,0)∈ k2 is a total (respectively, an ordinary) ramification point of Cn

if and only if c̃0(a)= 0, c̃1(a)= 0 and c̃2(a)= 0 (respectively, c̃2(a)≠ 0).
(iv) A point (a,0) ∈ k2 is a total (respectively, an ordinary) ramification point of

Cn+1 if and only if c3(a)= 0, c2(a)= 0 and c1(a)= 0 (respectively, c1(a)≠ 0).
(v) The point (a,0) ∈ k2 is a total (respectively, an ordinary) ramification point of

Cg−1 if and only if c̃3(a)= 0, c̃2(a)= 0 and c̃1(a)= 0 (respectively, c̃1(a)≠ 0).

Remark 2.2. If degc3(X) ≤ 2m−n, then X2 | c̃3(X) and (0,0) ∈ Cg−1. Since this
curve is nonsingular, we must have X � c̃2(X), i.e., degc2(X) = m+ 2. Similarly, if
degc0(X)≤ 2n−m, then we must have degc1(X)=n+2.

Remark 2.3. If (a,0) ∈ k2 is a ramification point of Cn+1, then a is a simple root
of c3(X). In fact, if a is a multiple root of c3(X) and also a root of c2(X), then (a,0)
is a singular point of Cn+1, which is absurd. Similarly, if (a,0) ∈ k2 is a ramification
point of C0, then a is a simple root of c0(X).

3. The main results. The only rational curves on Smn are the lines of the ruling
and the intersection of the scroll with the hyperplanes of Pm+n−1(k). We want to find
bounds for the number of ramified points that lie on the intersection of a trigonal
curve on the scroll with rational curves of the latter type. Whenm=n, all such rational
curves are linearly equivalent as divisors on Smn and after a change of variables, it
is enough to consider the points on C∩D. When m<n though, E is a distinguished
curve on the scroll (e.g., is the only curve with negative self-intersection) and then we
must also consider the points on C ∩E (in this case, E is called the directrix of the
scroll).
To study the occurrence of ramification points on the intersections C∩D and C∩E,

we use the local parametrizations and the curves C0,Cn,Cn+1, and Cg−1 introduced
above. We see that in order to count such points, it suffices to count the number of
ramification points of zero ordinate in C0 and in Cn+1, then the number of ramifica-
tion points with zero abscissa on Cn, and finally to check if the origin of the plane
containing Cg−1 is a ramification point of that curve.

Proposition 3.1. Let σ (respectively, ρ) denote the number of total (respectively,
ordinary) ramification points of C lying over E and let η (respectively, ξ) denote the
number of total (respectively, ordinary) ramification points of C lying over D. Then one
of the following possibilities occurs:
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(i) 0≤ σ +ρ ≤ 2m−n+2, 0≤ σ +ρ+η≤m+2, 0≤ η+ξ+σ ≤n+2.
(ii) σ +ρ = 2m−n+2, ξ = 0 and n−m+1≤ η≤n+2−σ .
(iii) ρ = 0, ξ+η= 2n−m+2, 0≤ σ ≤ 2m−n+2 and 0≤ σ +η≤m+2.
(iv) σ = 2m−n+2, η= 2n−m+2 and ρ = ξ = 0.
In the case m<n, the above possibilities are mutually exclusive.

Proof. Suppose that c2 ≠ 0 and c1 ≠ 0. If there is a total ramification point in
C∩(D\L∞), then Remark 2.1(ii) implies that, for some b ∈ k, we have (X−b) | c0(X),
(X−b) | c1(X) and (X−b) | c2(X). From Remarks 2.2 and 2.1(iii), we have that D∩L∞
is a total (respectively, an ordinary) ramification point of C if and only if degc0(X)=
2n−m+1, degc1(X)≤n+1, and degc2(X)≤m+1 (respectively, degc2(X)=m+2).
From all this, we may conclude that 0≤ σ +ρ ≤ 2m−n+2. The other inequalities in
(i) follow similarly.
To establish the inequalities in (ii), we suppose that c2(X) = 0 and c1(X) ≠ 0. Then

by Remark 2.1(iv), the roots of c3(X) are in a one-to-one correspondence with the
ramification points of Cn+1 of the form (a,0), with a ∈ k (i.e., the roots of c3(X) are
in a one-to-one correspondence with the ramification points of C ∩ (E\L∞) ). From
Remark 2.3, it follows that c3(X) does not have a multiple root. By Remark 2.2, since
c2(X)= 0, we must have degc3(X)= 2m−n+2 or degc3(X)= 2m−n+1, but either
way we have σ+ρ = 2m−n+2. Obviously, we have ξ = 0 and 0≤ η+σ ≤n+2. Now,
we do not have the restriction 0≤ σ +ρ+η≤m+2 and to avoid an overlapping with
the conditions in (i), we take η >m+2− (σ +ρ) = n−m and, thus, n−m+1 ≤ η ≤
n+2−σ .
Using Remarks 2.1, 2.2, and 2.3 in the same way as above, one may prove (iii) and

(iv), the former by assuming c1(X)= 0, and c2 ≠ 0 and the latter by assuming c1(X)=
c2(X)= 0.

We will show constructively that all the possibilities in Proposition 3.1 in fact occur,
and now we establish some results and notation that are needed for that. If f , h ∈
k[X,Y], we denote by ResX(f ,h) the resultant of f and h as elements of (k[Y])[X]
and ResY (f ,h) denotes the resultant of f and h as elements of (k[X])[Y].

Lemma 3.2. Let P = (a0, . . . ,a2m−n+2,b0, . . . ,b2n−m+2) be a point of kn+m+4, and let
p(X) = ∑2m−n+2

i=0 aiX2m−n+2−i, q(X) = ∑2n−m+2
j=0 bjX2n−m+2−j , and f(X) = p(X)Y 3+

q(X). Suppose that p and q do not have common roots neither multiple roots. Then the
set of points P such that ResX(ResY (f ,∂f/∂X),ResY (f ,∂f/∂Y))≠ 0 contains an open
set of km+n+4.

Proof. We have ResY (f ,∂f/∂Y) = 27p3q2 and ResY (f ,∂f/∂X) = p3(dq/dX)3−
3qp2(dq/dX)2(dp/dX)+3q2pdq/dX(dp/dX)2−(dp/dX)3q3. From the hypothesis
on p(X) and q(X), we conclude that if f is such that ResY (f ,∂f/∂X)� 0, then there
is no a ∈ k satisfying both ResY (f ,∂f/∂Y)(X) = 0 and ResY (f ,∂f/∂X)(X) = 0, i.e.,
ResX(ResY (f ,∂f/∂X),ResY (f ,∂f/∂Y))≠ 0. Calculating ResY (f ,∂f/∂X), we get

ResY

(
f ,

∂f
∂X

)
= (n−m)3A0X3m+3n+9+(n−m)2A1X3m+3n+8

+(n−m)A2X3m+3n+7+A3X3m+3n+6+··· ,
(10)
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where the dots indicate the sum of powers of X lesser than 3m+3n+6, A0 = 27a3
0b

3
0

and A3 is a polynomial expression in a0,b0,a1,b1,a2,b2,a3,b3,m, and n. More specif-
ically,A3 is a linear combination over k of monomials of the type aαaβaγbδbεbφ, with
α,β,γ,δ,ε,φ ∈ {0,1,2,3} and α+β+γ+δ+ε+φ = 3, and calculating the coefficient
of a3

1b
3
0, we get (3n−3m+1)3. So, ResY (f ,∂f/∂X)� 0 for P in an open set of kn+m+4.

Remark 3.3. Let C0 ⊂ k2 be a nonsingular plane curve, defined by the equation
f0(X,Y) = c/(X)Y/+···+c0(X), and let C be the curve in Smn, obtained by taking
the closure in the Zariski topology of the image of C0 in U0 under the parametrization
(a,b) � (a0 : ··· : an : a0b : ··· : amb). In [4, p. 67], it was shown that if / > 0 and
C is nonsingular, then C is also irreducible. This is done by considering that if C has
more than one (nonsingular) component, then they cannot intersect one another, but
this is contradicted if one calculates their intersection numbers.

Proposition 3.4. Let σ,ρ,η, and ξ be nonnegative integers satisfying the condi-
tions in any of the items in Proposition 3.1, and letm≤n be positive integers such that
(n+2)/2 ≤m ≤ 2n+2 and m+n+2 ≤ 5. Then there exists a trigonal nonsingular
irreducible curve C ⊂ Smn of genus g =m+n+2 such that, in C∩E, there are exactly
σ total ramification points and ρ ordinary ramification points of C and, in C∩D, there
are exactly ξ total ramification points and η ordinary ramification points of C .

Proof. We begin by assuming that σ,ρ,η and ξ satisfy the conditions (i) in
Proposition 3.1. Let r ,s,u,v,a,b,c, and d be nonzero polynomials of degrees σ , ρ,
η, ξ, 2m−n−σ −ρ, m+2−σ −ρ−η, n+2−σ −η−ξ, and 2n−m+2−ξ−η, re-
spectively, and let f = rsaY 3+ rsubY 2+ ruvcY +uvd. Let C0 be the plane curve,
defined by f(X,Y) = 0, and let C be Zariski closure in Smn of the curve in U0

∼
�����������������������→ k2

that corresponds to C0. We impose a series of open conditions on the coefficients of
the polynomials r , s, u, v , a, b, c, and d to grant that C is a nonsingular curve. We
begin by assuming that these polynomials do not have a common root when taken
two at a time and that none of them have a multiple root. We also assume that the
coefficient of X2m−n+1 in the polynomial rsa is different from zero. We have

ResY

(
f ,

∂f
∂Y

)
=27a3d2r 3s3u2v2−18a2bcdr 4s3u3v2−ab2c2r 5s3u4v2

+4a2c3r 5s2u3v3+4ab3dr 4s4u4v.
(11)

Thus, degResY (f ,∂f/∂Y) ≤ 4m+n+10 and we assume that the coefficients of the
polynomials r ,s,u,v,a,b,c, and d are such that ResY (f ,∂f/∂Y) is a polynomial in X
of degree 4m+n+10. Observe that if we substitute b� 0 and c� 0, then

ResY

(
f
∣∣
b=0,c=0,

(
∂f
∣∣
b=0,c=0
∂Y

))
= ResY

(
f ,

∂f
∂Y

)∣∣∣∣
b=0,c=0

= 27(rsa)3(uvd)2 (12)

has also degree 4m−n+ 10 as a polynomial in X. Similarly, we assume that the
degrees of ResY (f ,∂f/∂X) and ResY

(
f
∣∣
b=0,c=0,∂(f

∣∣
b=0,c=0)/∂X

)
as polynomials in

X are equal to 3m+n+9 if n≠m or equal to 3m+n+6 if n=m (as in the proof of
Lemma 3.2, one may check that the coefficient of X3m+3n+9 in ResY (f ,∂f/∂X) is equal
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to (n−m) times a nonidentically null polynomial expression in the leading coefficients
of r , s, u, v , a, b, c, and d that does not vanish when b = c = 0; the coefficients of
X3m+3n+8 andX3m+3n+7 are zero ifn=m and the coefficient ofX3m+3n+6 is a nonzero
polynomial expression in n, m and the coefficients of r , s, u, v , a, b, c, and d that
does not vanish when n=m or when b = c = 0).
Thus, we have

ResX

(
ResY

(
f ,

∂f
∂Y

)
,ResY

(
f ,

∂f
∂X

))∣∣∣∣
b=0,c=0

= ResX

(
ResY

(
f
∣∣
b=0,c=0,∂

(
f
∣∣
b=0,c=0

)
∂Y

)
,ResY

(
f
∣∣
b=0,c=0,∂

(
f
∣∣
b=0,c=0

)
∂X

))
. (13)

Of course, we also substitute db/dx � 0 and dc/dx � 0 in the expression on the
left side of the equality. This equality together with Lemma 3.2 show that we may
choose coefficients for r , s, u, v , a, b, c, and d such that ResX

(
ResY (f ,∂f/∂Y),

ResY (f ,∂f/∂Y)
)
≠ 0, which implies that C0, and a fortiori C∩U0 do not have a sin-

gular point. Observe that C ∩L∞ ∩E = φ since deg(rsa) = 2m−n+2. So, to grant
the smoothness of the points of C in C ∩ L∞, it suffices to grant the smoothness
of the points with zero abscissa of the plane curve defined by fn(X,Y) = 0, where
fn(X,Y) is obtained from f0(X,Y) by substituting X � 1/X and multiplying the re-
sulting coefficient of Y i by X2n−m+2−i(n−m), i = 0,1,2,3. To this end, it suffices to
have ResY (fn,∂fn/∂Y)(0) ≠ 0 but this is just another open condition on the (lead-
ing) coefficients of r ,s,u,v,a,b,c, and d, and so we may take it for granted. Finally,
we should check the smoothness of the points of C in C ∩ (E\L∞) or, equivalently,
we must check the smoothness of the points of zero ordinate of the plane curve
defined by fn+1(X,Y) := uvdY 3 + ruvcY 2 + rsubY + rsa = 0. But this is already
granted because, since rsa is a polynomial without multiple roots, the curves defined
by fn+1(X,Y)= 0 and (∂fn+1/∂X)(X,Y)= 0 have no points with zero ordinate in com-
mon. This shows that C is a nonsingular curve and, by Remark 3.3, C is an irreducible
(trigonal, of genus m+n+2) nonsingular curve. Using Remark 2.1, it is easy to see
that C has exactly σ (respectively, ρ) total (respectively, ordinary) ramification points
lying over E and η (respectively, ξ) total (respectively, ordinary) ramification points
lying over D.
To find curves C with ramification points as described in the other items of

Proposition 3.1 we proceed exactly as above, except for the starting curve C0. If σ ,
ρ, ξ, and η satisfy condition (ii) in Proposition 3.1, then we begin with a plane curve
defined by f(X,Y) = rsY 3+ rucY +ud, where r , s, u, c, and d are polynomials in
X of degrees σ , ρ, η, n+2−σ −η, and 2n−m+2−η respectively. If σ , ρ, ξ, and η
satisfy conditions (iii) in Proposition 3.1, then we begin with a plane curve defined by
f(X,Y)= raY 3+rubY 2+uv , where r , u, v , a, and b are polynomials in X of degrees
σ , η, ξ, 2m−n+2−σ , andm+2−σ−η respectively. Ifσ , ρ, ξ, and η satisfy conditions
(iv) in Proposition 3.1, then we begin with a plane curve defined by f(X,Y)= rY 3+u,
where r and u are polynomials in X of degrees 2m+n−2 and 2n−m+2 respectively.

Observe that the above proposition and the Riemann-Hurwitz Theorem show that
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there are trigonal curves C such that all the points in C ∩D or in C ∩ E are total
ramification points and these are all the ramification points of C .
The next proposition extends a result in [2], where similar bounds were obtained

but only total ramification points were considered.

Proposition 3.5. Let σ (respectively, ρ) be the number of total (respectively, ordi-
nary) ramification points on E. Let τ (respectively, ς) be the number of total (respec-
tively, ordinary) ramification points in C . Then one of the following possibilities occurs.

(i) τ = 2n−m+2, σ = 2m−n+2 and C has no other ramification points.
(ii) 0≤ τ+ς+2σ +ρ ≤ 2m+4.
Proof. Let f0 = c3(X)Y 3 + c2Y 2 + c1(X)Y + c0(X) be the equation of the plane

curve C0 which is isomorphic to C ∩U0, as we have seen in the last section, and
suppose that ResY (∂f0/∂Y ,∂2f0/∂Y 2) ≠ 0. It is easy to check that if (a,b) is a to-
tal ramification point of C0, then a is a root of 12c3(X)(3c1(X)c3(X)− c2(X)2) =
ResY (∂f0/∂Y ,∂2f0/∂Y 2) and Remark 2.1(i) yields that amust be a root of 3c1(X)c3(X)
−c2(X)2. From the bounds on the degrees of c1,c2, and c3, we see that this polynomial
has a degree which is at most 2m+4. From Remark 2.1(iv), we have that if (a′,0) is
an ordinary (respectively, a total) ramification point of Cn+1, then a′ is a root (respec-
tively, is at least a double root) of 3c1(X)c3(X)−c2(X)2. In a similar way, one may see
that if there is a point of the form (0,b) in Cn and it is a total ramification point, then 0
is a root of 3c̃1(X)c̃3(X)− c̃2(X)2 =

(
3c1(1/X)c3(1/X)−C2(1/X)2

)
X2m+4. Also, if the

point at the origin of k2 is an ordinary (respectively, a total) ramification point of Cg−1,
then, by Remark 2.1(v), we must have that 0 is a root (respectively, is at least a double
root) of 3c̃1(X)c̃3(X)− c̃2(X). Note that these two last cases are mutually exclusive,
for the points in the Y -axis of the plane that contains Cg−1 as well as the points in the
Y -axis of the plane that contains Cn are all mapped into the line L∞ through the appro-
priate local parametrizations of Smn described in the previous section and of course
a line in the scroll may contain at most one ramification point of C . Moreover, for one
of these two last cases to occur, we must have deg

(
3c1(X)c3(X)−c2(X)2

)
< 2m+4

so that anyway, we get 0≤ τ+2σ +ρ ≤ 2m+4.
Suppose now that 3c1(X)c3(X)−c2(X)2 = 0. Then by Remarks 2.1(iv) and 2.3, we

see that c3(X) does not have a multiple root and that c3(X) | c1(X). Observe that, by
Remark 2.2, we must have degc3(X)= 2m−n+2, degc2(X)=m+2, and degc1(X)=
n+2 or else degc3(X) = 2m−n+1, degc2(X) =m+1, and degc1(X) = n+1. Either
way, from Remark 2.1, we have that σ = 2m−n+2 and ρ = 0. To establish the first as-
sertion now, we use the Riemann-Hurwitz Theorem and note that it is enough to show
that there is no ordinary ramification point of C in C\E. From 3c1(X)c3(X)= c2(X)2, it
is easy to verify that 12c3(X)(∂f0/∂Y)(X,Y)= (∂2f0/∂Y 2)2(X,Y) and also that there
is no ordinary ramification point in C0. Finally, we note that 3c̃1(X)c̃3(X) = c̃2(X)2,
hence, 12c̃3(X)(∂fn/∂Y)(X,Y)= (∂2fn/∂Y 2)2(X,Y). Then, as above, we conclude that
there is no ordinary ramification point in Cn, which completes the proof.
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