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ABSTRACT. Let t be a sequence in (0,1) that converges to 1, and define the Abel-type matrix
Axt by ang = (kZ"‘) tk+1(1 —t,,)**! for & > —1. The matrix Ay determines a sequence-
to-sequence variant of the Abel-type power series method of summability introduced by
Borwein in [1]. The purpose of this paper is to study these matrices as mappings into #.
Necessary and sufficient conditions for Ayt to be £-£, G-, and Gy, -¥ are established. Also,
the strength of Ay, in the £-¢ setting is investigated.
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1. Introduction and background. The Abel-type power series method [1], denoted
by Ay, x> —1, is the following sequence-to-function transformation: if

>k
Z( z(x)ukxk<oo forO<x<1 (1.1)
k=0

and
lim (1-x)%+1 S (kz‘x)ukxk - L (1.2)
X1 k=0

then we say that u is Ayx-summable to L. In order to study this summability method
as a mapping into £, we must modify it into a sequence to sequence transformation.
This is achieved by replacing the continuous parameter x with a sequence t such that
0 <ty <1 for all n and limt,, = 1. Thus, the sequence u is transformed into the
sequence Ay :u whose nth term is given by

(Aartn= -t S (€7 Ytk (1.3)
k=0 k

This transformation is determined by the matrix Ay whose nkth entry is given by
k+«
ank:< . )tﬁ(l—tnwl. (1.4)

The matrix Ay, is called the Abel-type matrix. The case & = 0 is the Abel matrix
introduced by Fridy in [5]. It is easy to see that the A, ; matrix is regular and, indeed,
totally regular.
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2. Basic notations. Let A = (a,x) be an infinite matrix defining a sequence-to-
sequence summability transformation given by

(AX)n = D Ank Xk, (2.1)
k=0
where (Ax), denotes the nth term of the image sequence Ax. The sequence Ax is
called the A-transform of the sequence x. If X and Z are sets of complex number
sequence, then the matrix A is called an X-Z matrix if the image Au of u under the
transformation A is in Z whenever u is in X.
Let y be a complex number sequence. Throughout this paper, we use the following
basic notations:

00

{= {y Z [Vl converges},
k=0
= { D> kal’”converges},
k=0
d(A) = {y : Z ank Yk converges for each n > 0}, 2.2)
£(A) = {y :Ay e t},

={y:yr=0(r*) for some r € (0,1)},
Gw = {v:ye=0(r") for some r € (0,w),0 <w < 1},

c(A) = {y:y is summable by A}.

3. The main results. Our first result gives a necessary and sufficient condition for
Ayt to be £-L.

THEOREM 1. Suppose that —1 < « < 0. Then the matrix Ay, is £-C if and only if
(1-t)xtl e f.

PROOF. Since -1 <«x<0andO <t, <1, we have
Z lank| = ( ) Z th(1—t,)* ! < Z(l—t y*+1 for each k. (3.1

Thus, if (1 —t)**! € ¢, Knopp-Lorentz theorem [6] guarantees that Ay, is an £-f
matrix. Also, if Ay is an £-f matrix, then by Knopp-Lorentz theorem, we have

D lanol < oo, (3.2)

n=0
and this yields (1 —t)*+1 € £, O
REMARK 1. In Theorem 1, the implication that Ay is £-€ = (1 -t)**! € £ is also

true for any « > 0, however, the converse implication is not true for any « > 0. This
is demonstrated in Theorem 4 below.
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COROLLARY 1. If -1 <& <0 and <0<ty <wy <1, then Ay, is an £-f matrix
whenever Ay, is an £-f matrix.

PROOF. The corollary follows easily by Theorem 1. O

COROLLARY 2. If-1< &< B <0, then Ag; is an £-f matrix whenever Ay is an £-f
matrix.

COROLLARY 3. If-1 <« <0 and Ay, is an -0 matrix, then 1/log(1-t) € L.

COROLLARY 4. If -1 < & < 0, then arcsin(1 —t)**! € £ if and only if Ay, is an £-€
matrix.

COROLLARY 5. Suppose that —1 < x < 0 and w,, = 1/t,,. Then the zeta matrix z,,
[2] is £-0 whenever Ay, is an £-f matrix.

COROLLARY 6. Suppose that -1 <x<0andt,=1-(n+2)"1,0<q <1:then Ay
is not an - matrix.

PROOF. Since (1—t)**! is notin ¥, the corollary follows easily by Theorem 1. O

Before considering our next theorem, we recall the following result which follows
as a consequence of the familiar Holder’s inequality for summation. The result states
that if x and v are real number sequences such that x € 7,y € 4, p > 1, and
(1/p)+(1/q) =1, then xy € 4.

THEOREM 2. If Ay is an £-0 matrix, then

[

(2—1ty)
> log-———% < . (3.3)
iy (n+1)
PROOF. Since log(2—t;,) ~ (1—ty), it suffices to show that
> (1=tn) o, (3.4)
i (n+1)

If Ay is an £-f matrix, then, by Theorem 1, we have (1 -t)*"!1 € £.If -1 < & < 0, it
is easy to see that if (1 —t)**! € ¢, then we have (1 —t) € £ and, consequently, the
assertion follows. If « > 0, then the theorem follows using the preceding result by
letting x,, =1—-ty, yn=1/(n+1),p=ax+1,and g = (x+1)/x. O

THEOREM 3. Suppose that t, = (n+1)/(n+2). Then Ay is an £-f matrix if and
only if o > 0.

PROOF. If Ay is an £-f matrix, then, by Theorem 1, it follows that (1 —t)%*! € £
and this yields « > 0. Conversely, suppose that & > 0. Then we have

00

i k

S il = (k+o<> s <n+1> (n42)- (D
- S

n=0 n=0

n+?2
_ (kz"‘) S (n+ DK (n+2)-krarh (3.5)
n=0
< M('ﬁ(“) J (x +1)k(x +2)~krarD) gy
0
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for some M > 0. This is possible as both the summation and the integral are finite
since & > 0. Now, we let

gk) = J:(x+ Dk (x +2) krarD gy (3.6)

and we compute g (k) using integration by parts repeatedly. We have

1

r 27k 4y (k), (3.7)

gk) =

where

hy (k) = k': JO (x+ D L (x+2) k0 gy

k- 2-(k+a=1) (3-8)

T ko ko1 ek
and

ha (k) = kik—1) Jm(er1)k’2(x+2)*(k+"‘*1)dx

(k+x)(k+x—1) Jo

 k(k—1)-2-k+a-2)
T (krox)(k+a—1)(k+x—2)

(3.9

+h3(k).

It follows that

k(k—1)(k=2) -2~ (k+a=3)

hs (k) = (k+o)(k+x—1)(k+ax—2)(k+x—3)

+hy(k), (3.10)

where

k(k-1)(k—2)(k-3)

hy(k) = (k+o)(k+ox—-1)(k+x-2)(k+x—-3)(k+x—4)

w (3.11)
xJ (x+ 1) 4 (x +2) " kra=3) g5,
0

Continuing this process, we get

o k(k—1)(k—2)---2-% 2@
RS T ko) (k+oa—1)(k+x—2) - ox (x(k+o‘>' (3.12)

k

It is easy to see that g(k) can be written using summation notation as

27X + 1\ _;
g(k) om%(l ol( )2

B k_+o< i(lﬂx 1) (3.13)

()

/\
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Consequently, we get

) M k+o<> ;
+ o
Z amd <M (" Vo < — == =T (3.14)
(k + o<> x
“\
Thus by the Knopp-Lorentz theorem [6], Ay is an £-f matrix. O

COROLLARY 7. Supposet, = (n+1)/(n+2). Then Ay is an £- matrix if and only
if (1—t) e f.

THEOREM 4. Suppose x >0 andt, =1—-(n+2)"1,0 < q < 1. Then Ay, is not an
£-0 matrix.

PROOF. If (1-t)**!isnotin ¥, then by Theorem 1, Ay, isnot £-£.1f (1-t)**1 € £,
then we prove that Ay is not £-# by showing that the condition of the Knopp-Lorentz
theorem [6] fails to hold. For convenience, we let g = 1/p and 2'/? = R, where p > 1.
Then we have

W)

(&
gt

k
( Z“)L ((x+ 217 =1) (e 2) UMKt g

(1-(n+ 2)’1/”)k(n+ 2)(/p) et

Me

K‘-l—

(o]
Z lank!| =
n=0

Il
O

n

k
(n+2)l/v_1> (n+2)(—1/p)(k+u+1) (3.15)

u[\/_|8

2

for some M > 0. This is possible as both the summation and integral are finite since
(1-t)**! € £. Now, let us define

g(k) = Jw (e 1) (e o)1 kras gy, (3.16)
0

Using integration by parts repeatedly, we can easily deduce that
p(R—1)kR-k+atl-p)  pl(R —1)k-1(R)-k+a-p)
k+o+l-p +(k+o<+1—p)(k+o(—p)

pk(k—1)(k=2)---(R)"(xtl-p)
T krarl- p)(k+o— p)(k+o< 1-p)-(x+l-p)

gk) =

(3.17)

This implies that

pk(k—1)(k—2)-..R-(x+t1-p)
(k+o+1-p)(k+ax—p)k+a—-1-p)---(x+1-p)
pROSY (3.18)

(s1-p) <k+0(',|<'1—}9)

g(k) >
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Now, we have

i k
s |ank|le< z“)guo

n=0
pM, <k+ “)R—umfp) (3.19)
> k > Mzk® = MpkP1
(x+1- )(k+(x+1—]ﬂ) kerl-p T EE
p k

Thus, it follows that

sgp{z ankl} o, (3.20)

and hence Ay, is not £-¢. O

In case t, = 1 — (n+2)74, it is natural to ask whether A is an £-f matrix. For —1 <
&« < 0, it is easy to see that Ay is £-¢ if and only if & > (1 —¢q)/q, by Theorem 1.
For « > 0, the answer to this question is given by the next theorem, which gives a
necessary and sufficient condition for the matrix to be £-£.

THEOREM 5. Suppose that x>0 and t, =1— (n+2)~9. Then An, is an £-f matrix
if and only if q > 1.

PROOF. Supposethatg>1.Letq=1/p,2'/?=Rand (R-1)/R=S,where0<p < 1.
Then we have

Z [ankl :( ; ) Z 1-(n+2)” l/p) (n+2)( 1/p)(ax+1)
n=0 n=0
k > k
= ( Z ) Z (n+2)”’”—1) (1 +4) 1P v D) 3.21)
kto 1 k -1/p)(k 1)
SM( K )J ((X+2) /r7_1> (X+2)< Ip)(k+a+1) g4
0

for some M > 0. This is possible as both the summation and the integral are finite
since (1—¢t)**! € £ for &« > 0. Now, let us define

g(k) = Jm ((x+2)1v - 1>k(x +2) ket g, (3.22)
0

Using integration by parts repeatedly, we can easily deduce that
p(R_l)kR—(k+o<—p+l) pk(R_l)k—l(R)—(kﬂx—p)
+
k+ax-p+1 (k+ax—p+1)(k+x—-p)

pk(k—1)(k=2)...-R(a-p+D)
(k+0(_p+1)(k+o(—p)...(o(_p+1)'

g(k) =

(3.23)

+...+

Now, from the hypotheses that g > 1 and « > 0, it follows that
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(R_l)kJro(R—(kﬂx) k(R_l)kﬂxflRf(kafl)

gk) = K+ (k+0)(k+a—1)
k(k—1)(k-2)- — () (3.24)
(k+o<)(k+(x—1) ( ) ’
Sk kskret o, kk=1)(k=2)---8%
Tkt (k+ox)(k+ox—1) (k+ox)(k+x—-1)---x

By writing the right-hand side of the preceding inequality using the summation nota-
tion, we obtain

g0 <5 s i(l+(x 1)

k+oy o
"‘( k )
i+ox—1
= ko k+(x Z( ) (3.25)
()
k
= $* S %= 1 .
(k+o<> <k+o<>
Nk Nk
Consequently, we have
k+
> k+« M( k ) M
ZlanklsM< X )g(k)57=—. (3.26)
n=0 <k+o<> x
N\

Thus, by Knopp-Lorentz theorem [6], Ay, is an £-f matrix .
Conversely, if Ay is an £-f matrix, then it follows, by Theorems 3 and 4, that g > 1.
O

COROLLARY 8. Suppose thatt, =1-(n+2) 1, wy=1-(n+2)"? andq < p. Then
Anw is an £-€ matrix whenever Ay, is an £-f matrix.

PROOF. The result follows immediately from Theorems 1 and 5. O

COROLLARY 9. Suppose that x > 0, t, =1-(n+2) 4w, =1-(n+2)% and
(1/q)+ (1/p) = 1. Then both Ay and A, are -0 matrices.

PrROOF. The hypotheses imply that both g and p are greater than 1, and hence the
corollary follows easily by Theorem 5. O

THEOREM 6. The following statements are equivalent:
(1) Ayt is a Gy -f matrix;

(2) 1-t)*led;

(3) arcsin(1 —t)*+l e ¢;

@ (A=) (VT-(1-1)2D) e f;

(5) Ayt is a G-0 matrix.
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PROOF. We get (1) = (2) by [9, Thm. 1.1] and (2) = (3) = (4) = (5) follow easily
from the following basic inequality

X

x<arcsinx<ﬁ, O0<x<1, (3.27)
and by [4, Thm. 1]. The assertion that (5) = (1) follows immediately as G,, is a subset
of G. O

COROLLARY 10. Suppose that t, =1 — (n+2)~4. Then Ay is a G-{ matrix if and
onlyif x> (1-q)/q. For q = 1, Ay is a G-f matrix if and only if it is an £-0 matrix.

PROOF. The proof follows using Theorems 3 and 6. O

THEOREM 7. The following statements are equivalent:
(1) Axt is a Gy -G matrix ;

(2 1-t*'eg;

(3) arcsin(l —t)**1 € G;

(4) Axt is a G-G matrix.

PROOF. (1) = (2) follows by [9, Thm. 2.1] and (2) = (3) = (4) follows easily from
(3.27) and [4, Thm. 4]. The assertion that (4) = (1)follows immediately as G,, is a
subset of G. O

COROLLARY 11. If Ay is a Gy -Gy matrix, then it is a G-G matrix.

Our next few results suggest that the Abel-type matrix Ay is £-stronger than the
identity matrix (see [7, Def. 3]). The results indicate how large the sizes of £(A4;) and
d(Aq,) are.

THEOREM 8. Suppose that —1 < x <0, Ay, is an £-€ matrix, and the series > ;_o X«
has bounded partial sums. Then it follows that x € £(Axy).

PROOF. Since, for -1 < x <0, ( k}("‘) is decreasing, the theorem is proved by follow-
ing the same steps used in the proof of [7, Thm. 4]. O

REMARK 2. Although the preceding theorem is stated for —1 < « < 0, the conclu-
sion is also true for &« > 0 for some sequences. This is demonstrated as follows: let x
be the bounded sequence given by

xp = (-1)k. (3.28)

Let Y be the Ay ;-transform of the sequence x. Then it follows that the sequence Y is
given by
k+« X
K Xty

(kzo‘)(_l)ktg (3.29)

Me

Yp = (1—t,)*"!

=
Il
(=]

Me

— (1 _tn)DH—l

=
Il

0
3 (1 _tn)zx+1
C (L+ty)ott
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which implies that
Yn < (1—t,)% (3.30)
Hence, if Ay, is an £-f matrix, then by Theorem 1, (1-t)**! € £, and so x € £(An,).

COROLLARY 12. Suppose that -1 < &« <0, Ay is an £-f matrix. Then £(Ay;) con-
tains the class of all sequences x such that ;;_, x is conditionally convergent.

REMARK 3. Infact, we can give a further indication of the size of £(Ax,) by showing
that if A, is an £-f matrix, then it also contains an unbounded sequence. To verify
this, consider the sequence x given by

k+o+1
_(_1\k
x=(-1) ] (3.31)
Let Y be the A, -transform of the sequence x. Then we have
> (k+«
Vo= (1=t 3 (5 )tk
k=0
> (k+« k+a+1
_ (1 ya+l _ 1k k (3.32)
(1=tn) k§0< k )( b xr1
B (1=ty,)ot!
T (L 4ty)et2
and, consequently,
Yn < (1—t,)% (3.33)

Hence, if Ay, is an £-f matrix, then by Theorem 1, (1 —t)**! € £, and so x € £(Ax,).
This example clearly indicates that A, is a rather strong method in the - setting
for any ot > —1.

The £-£ strength of the A,; matrices can also be demonstrated by comparing them
with the familiar Norland matrices (N,) [3]. By using the same techniques used in
the proof of [3, Thm. 8], we can show that the class of the A,; matrix summability
methods is £-stronger than the class of N, matrix summability methods for some p.

When discussing the £- strength of Ay, or the size of £(Ay,), it is very important
that we also determine the domain of Ay ;. The following proposition, which can be
easily proved, gives a characterization of the domain of Ay ;.

PROPOSITION 1. The complex number sequence x is in the domain of the matrix
Ag 1If and only if

limsup |xx V% < 1. (3.34)
k

REMARK 4. Proposition 1 can be used as a powerful tool in making a comparison
between the £-¢ strength of the A, matrices and some other matrices as shown by
the following examples.

EXAMPLE 1. The A, matrix is not £-stronger than the Borel matrix B[8, p. 53]. To
demonstrate this, consider the sequence x given by

xi = (=3)k. (3.35)
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Then we have
(Bx)p= > e "——(=3)F=em (3.36)
o k!

Thus, we have Bx € £ and hence x € £(B), but by Proposition 1, x ¢ £(A«:) . Hence,
Ag, 18 not £-stronger than B.

EXAMPLE 2. The A, matrix is not £-stronger than the familiar Fuler-Knopp matrix
E, for r € (0,1). Also, E, is not {-stronger than A;. To demonstrate this, consider
the sequence x defined by

xp=(-q)¥ and ¥=-, (3.37)

1
a
where g > 1. Let Y be the E,-transform of the sequence x . Then it is easy to see that
the sequence Y is defined by

Y, - <;1>" (3.38)

Since g > 1, we have Y € £ and hence x € ¢(E,), but x ¢ {(Ay;) by Proposition 1.
Hence, Ay, is not £-stronger than E,. To show that E, is not f-stronger than A,
we let —1 < o« < 0 and consider the sequence x that was constructed by Fridy in his
example of [5, p. 424] . Here, we have x ¢ {(E,), but x € £(Ay;) by Theorem 8. Thus,
E, is not {-stronger than Ay .
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