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Abstract. Traditionally, boundary value problems have been studied for elliptic differ-
ential equations. The mathematical systems described in these cases turn out to be “well
posed”. However, it is also important, both mathematically and physically, to investigate
the question of boundary value problems for hyperbolic partial differential equations. In
this regard, prescribing data along characteristics as formulated by Kalmenov [5] is of spe-
cial interest. The most recent works in this area have resulted in a number of interesting
discoveries [3, 4, 5, 7, 8]. Our aim here is to extend some of these results to a more general
domain which includes the characteristics of the underlying wave equation as a part of its
boundary.
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1. Introduction. The well-known two point boundary value problem for the mass-
spring system has an analog in the continuum case which was first formulated in [5, 7]
as follows

Lu=utt−uxx = F(x,t), (x,t)∈ R, (1.1)

u(x,0)= 0, 0≤ x ≤ 2, (1.2)

u(t,t)=u(1+t,1−t), 0≤ t ≤ 1. (1.3)

Here,R is a region bounded by the characteristics and the line segment t = 0, 0≤ x ≤ 2,
as described below.

R = {(x,t) : t < x < 2−t, 0< t < 1
}
. (1.4)

In [5], it is shown that a unique solution u ∈ W 1
2 (R)∩W 1

2 (∂R)∩ C(R̄) [1] of (1.1),
(1.2), and (1.3) can be constructed, and that L and L−1 are both self adjoint in L2(R).
Furthermore, in the case where F(x,t) = λu, a complete set of eigenfunctions and
corresponding eigenvalues are explicitly computed. In [7] on the other hand, where
F(x,t)= λp(x,t)u, such explicit computations are not possible. The selfadjointness
of L in Lp2 (R), the set of weighted L2 functions in R with weight p, and thereby the
existence of a complete set of eigenfunctions, is established by constructing a sym-
metric Hilbert Schmidt kernel [9] for L−1. In addition it is demonstrated that one can
replace the boundary conditions (1.2) and (1.3) with

ut(x,0)= 0, 0≤ x ≤ 2, u(1,1)= 0, (1.5)
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and obtain self adjointness. In the subsequent papers [4, 8], some generalizations
of these results were considered. These generalizations were focused on the dimen-
sion of the space variable while preserving both the complete continuity [9] and self
adjointness of the resulting integral operator. Our goal in this paper is to study equa-
tion (1.1) along with boundary data prescribed on the characteristics and noncharac-
teristic C1 curve. The effect of this change in the boundary is that the symmetry of
the kernel of the integral operator is lost. However, one can preserve the compactness
of the integral operator and obtain information about the spectrum of the operator L
using the theory of compact operators.

2. The boundary value problem. Let f ∈ C1(0,1) satisfy f(0) = 0, f ′(t) > 1. De-
note by a, 0< a < 1, the solution of the implicit equation f(t)= 2−t. Define Ω ⊆R2

to be the region

Ω = {(s,t) : t < s < f(t), 0< t < a
}∪{(s,t) : t < s < 2−t, a < t < 1

}
. (2.1)

The characteristic curves C1,C2 and noncharacteristic Γ are defined by

C1 =
{
(s,t) : s = t, 0≤ t ≤ 1

}
,

C2 =
{
(s,t) : s = 2−t, 0≤ t ≤ 1

}
,

Γ = {(s,t) : s = f(t), 0≤ t ≤ a}.
(2.2)

Let τ ∈ [0,1] be fixed. The line s = −t+f(τ)+τ meets Γ and C1 at points S1 and S2,
respectively, and the line s = t+f(τ)−τ meets Γ and C2 at S1, S3. Denote the point
of intersection of C1 and C2 by S4. The coordinates of these points are as follows.

S1 =
(
f(τ),τ

)
, S2 =

(
1
2

(
f(τ)+τ), 1

2

(
f(τ)+τ)),

S3 =
(

1
2

(
2+f(τ)−τ), 1

2

(
2−f(τ)+τ)), S4 = (1,1).

(2.3)

Let α≠ 1, 0, be a constant in R. Consider the boundary value problem

utt−uss = F(s,t), (s,t)∈Ω, (2.4)

u(S1)−u(S2)=α
(
u(S3)−u(S4)

)
, 0≤ τ ≤ 1, (2.5)

u|Γ =ω(t), 0≤ t ≤ a, (2.6)

whereω is known. Our goal is to convert problem (2.4), (2.5), and (2.6) into an integral
equation and study the kernel of the resulting integral operator.

3. The solution of the boundary value problem. Make the change of variables

x = s−t, y = s+t. (3.1)

Then, u(s,t)= v(x,y) and equation (2.4) has the simple form

vxy =�(x,y), (3.2)

for v , where �(x,y) = (1/4)F((y+x)/2,(y−x)/2). Under the last transformation
the region Ω is mapped into

T = {(x,y) : 0≤ x ≤M, g(x)≤y ≤ 2
}
, (3.3)

where g(x) is the solution of the equation
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y+x
2

= f
(
y−x

2

)
, (3.4)

for y , and M is the x-coordinate of the point of intersection of y = g(x) and y = 2.
We note that

g′ = f ′ +1
f ′ −1

> 1, (3.5)

therefore, the two lines do intersect. Let (σ ,η) be an interior point of T . For a fixed
σ ∈ [0,M], the boundary condition (2.5) in these coordinates will be

v
(
σ,g(σ)

)−v(0,g(σ))=α(v(σ,2)−v(0,2)). (3.6)

In order to convert (3.2) and (3.6) into an integral equation, keeping in mind that v
along the curve y = g(x) is given, we integrate (3.2) over the rectangle with vertices
at (0,2), (σ ,2), (0,η), and (σ ,η). We have

v(σ,2)−v(σ,η)−v(0,2)+v(0,η)=
∫ 2

η

∫ σ
0

�(x,y)dxdy. (3.7)

Substitute g(σ) for η in (3.7) to obtain

v
(
σ,g(σ)

)−v(0,g(σ))= v(σ,2)−v(0,2)−
∫ 2

g(σ)

∫ σ
0

�(x,y)dxdy. (3.8)

The boundary condition (3.6) and equality (3.8) imply

v(σ,2)= v(0,2)+ 1
1−α =

∫ 2

g(σ)

∫ σ
0

�(x,y)dxdy. (3.9)

If we substitute g−1(η) for σ in (3.7) we have

v
(
g−1(η),2)−v(g−1(η),η)−v(0,2)+v(0,η)=

∫ 2

η

∫ g−1(η)

0
�(x,y)dxdy. (3.10)

The substitution of g−1(η) for σ in (3.9) yields

v
(
g−1(η),2)= v(0,2)+ 1

1−α
∫ 2

η

∫ g−1(η)

0
�(x,y)dxdy. (3.11)

In equations (3.10) and (3.11) eliminate v
(
g−1(η),2

)−v(0,2) and solve for v(0,η),
then

v
(
0,η

)= v(g−1(η),η
)+ −α

1−α
∫ 2

η

∫ g−1(η)

0
�(x,y)dxdy. (3.12)

Substitute v(0,η) from (3.12) and v(σ,2) from (3.9) into (3.7) and solve for v(σ,η)
to obtain

v
(
σ,η

)= v(g−1(η),η)+ 1
1−α

∫ 2

g(σ)

∫ σ
0

�(x,y)dxdy

− α
1−α

∫ 2

η

∫ g−1(η)

0
�(x,y)dxdy−

∫ 2

η

∫ σ
0

�(x,y)dxdy.

(3.13)
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If we combine the integrals in the above equation we can write (3.13) in the more
compact form

v
(
σ,η

)= v(g−1(η),η)+
∫∫
T

G(σ,η; x,y)�(x,y)dxdy, (3.14)

where G the Green’s function in T ×T is defined as follows. Let (σ ,η) be a point in T .
Define the sets Ti ⊆ T , 1≤ i≤ 6 by

T1 =
{
(x,y) : 0≤ x ≤ σ, g(x)≤y ≤ g(σ)},

T2 =
{
(x,y) : 0≤ x ≤ σ, g(σ)≤y ≤ η},

T3 =
{
(x,y) : σ ≤ x ≤ g−1(η), g(x)≤y ≤ η},

T4 =
{
(x,y) : 0≤ x ≤ σ, η≤y ≤ 2

}
,

T5 =
{
(x,y) : σ ≤ x ≤ g−1(η), η≤y ≤ 2

}
,

T6 =
{
(x,y) : g−1(η)≤ x ≤M, g(x)≤y ≤ 2

}
.

(3.15)

Then G, has values

G(σ,η; x,y)= 0, (x,y)∈ T1∪T3∪T4∪T6,
(
σ,η

)∈ T ,
G(σ,η; x,y)= 1

1−α, (x,y)∈ T2,
(
σ,η

)∈ T ,
G(σ,η; x,y)= −α

1−α, (x,y)∈ T5,
(
σ,η

)∈ T .
(3.16)

Remark. We note that forα=−1 the functionG is symmetric. Also, we had chosen
the positive semi axis t = 0 instead of s = f(t), we would have had y = x as a part
of the boundary of T . If, in addition, datum on t = 0 was chosen to be zero then the
result of [7] would be applicable to v .

We have the following uniqueness result.

Theorem 3.1. The problems (3.2) and (3.6) have a unique solution in C2(T).

Proof. Let v1 and v2 be two solutions. Then their difference V satisfies the fol-
lowing equations:

Vxy = 0, (x,y)∈ T , (3.17)

V
(
0,g(σ)

)=−αV(σ,2), 0≤ σ ≤M, (3.18)

V
(
σ,g(σ)

)= 0, 0≤ σ ≤M. (3.19)

The condition (3.18) is the simplified version of condition (3.6) due to the compatibility
condition

V
(
σ,g(σ)

)= 0= V(0,2)= V(0,0), 0≤ σ ≤M. (3.20)

Choose a point (σ ,η) in T , and integrate equation (3.17) over the rectangle in T with
vertices at (0,η), (σ ,η), (σ ,2), and (0,2). We will have,

V(σ,2)−V(σ,η)+V(0,η)= 0. (3.21)

Also, if we substitute g(σ) for η in (3.21) and use the compatibility condition we have

V(σ,2)+V(0,g(σ))= 0. (3.22)
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This equation together with the condition (3.18) imply that V(σ,2) and V(0,g(σ))
are both zero. But these are the values of V along y = 2 and x = 0. Substituting zero
for V(σ,2) and V(0,η) in (3.21), we will have V(σ,η)≡ 0.

The case that the right-hand side of equation (3.2) depends on the unknown function
v is treated differently. We will consider this situation in two separate settings next.

4. The eigenvalue problem

4.1. The datum along Γ is identically zero. Let λ′ be a parameter, and p a nonneg-
ative measurable function in L∞(T). Denote by B the Banach space of weighted square
integrable functions, i.e.,

B = Lp2 (T)=
{
φ :
∫∫
T

∣∣φ∣∣2pdxdy <∞
}
, (4.1)

with norm in B defined by,

∥∥φ∥∥p2 =


∫∫
T

∣∣φ∣∣2pdxdy




1/2

. (4.2)

In what follows we consider the equation

vxy = λ′pv, (x,y)∈ T (4.3)

along with the conditions (3.18) and (3.19). The integration of equation (4.3), over a
rectangle inside the region T as before yields the following integral equation for v ,

v
(
σ,η

)= λ′
∫∫
T

G(σ,η; x,y)pvdxdy, (4.4)

whereG is the same Green’s function used as a kernel of the integral in equation (3.14).
Equation (4.4) can be written in the operator notation form

λv =Kv, (4.5)

where, for φ∈ B,

(
Kφ

)(
σ,η

)=
∫∫
T

G(σ,η; x,y)φ(x,y)p(x,y)dxdy, (4.6)

and λ = 1/λ′. For v ∈ B, (4.5) is an eigenvalue problem of functional analysis. The
theory of the spectrum of a compact operator [2, 9] allows us to investigate the solu-
tions of this operator equation. Our task is to show that K is a compact (or completely
continuous, e.g., [9]) operator in B. Here, for the sake of convenience, we include a few
definitions that we will use in the sequel.

Definition 4.1. A set of functions {φ} is said to be uniformly bounded if there
exists a constant c such that |φ| ≤ c, for all functions φ in the set.

Definition 4.2. A set of continuous functions {φ} is said to be equicontinuous
in a region Ω, if given ε, there exists δ(ε) such that for any two points P1,P2 in Ω,
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∣∣P1−P2
∣∣< ε, (4.7)

implies

∣∣φ(P1)−φ(P2)
∣∣< δ(ε), (4.8)

for all functions φ in the set [2]. According to Arzela’s theorem [9], any uniformly
bounded equicontinuous set {φ} of functions has a uniformly convergent subset.

Theorem 4.1. The operator K is compact in B.

Proof. Consider the set {φ} ⊂ B of functions uniformly bounded in the norm ‖·‖p2
so that,

(‖φ‖p2 )2 =
∫∫
T

∣∣φ∣∣2pdxdy ≤ L′. (4.9)

We have,

∣∣Kφ∣∣2 ≤
∫∫
T

∣∣G(σ,η; x,y)
∣∣2pdxdy

∫∫
T

∣∣φ∣∣2pdxdy, (4.10)

by Hölder inequality. The first integral on the right-hand side of inequality (4.10)
is bounded because G is bounded and p is integrable in T . The second integral is
bounded because of the assumption (4.9). Therefore, the bound on the right-hand side
of the inequality (4.10) is independent of φ, i.e., the set {Kφ} is uniformly bounded.
Now, let ε > 0 and choose any two points P1,P2 in T , so that |P1−P2|< ε. To show that
|(Kφ)(P1)−K(φ)(P2)|< δ(ε), independent of P1,P2, we have by Hölder inequality,

∣∣Kφ(P1)−kφ(P2)
∣∣2

≤
∫∫
T

∣∣G(P1; x,y)−G(P2; x,y)
∣∣2pdxdy

∫∫
T

∣∣φ∣∣2pdxdy. (4.11)

The first integral on the right-hand side can be made small as follows. Let P1 and P2

have coordinates (σ ,η) and (σ ′,η′), respectively. Assume without loss of generality
that σ ′ <σ and η′ < η. Define the rectangles R1–R6 in T as follows (Figure 1)

R1 =
{
(x,y) : 0≤ x ≤ σ ′, η′ ≤y ≤ η},

R2 =
{
(x,y) : 0≤ x ≤ σ ′, g(σ ′)≤y ≤ g(σ)},

R3 =
{
(x,y) : σ ′ ≤ x ≤ σ, g(σ)≤y ≤ η′},

R4 = {(x,y) : σ ′ ≤ x ≤ σ, η≤y ≤ 2},
R5 =

{
(x,y) : σ ≤ x ≤ g−1(η′), η′ ≤y ≤ η},

R6 =
{
(x,y) : g−1(η′)≤ x ≤ g−1(η), η≤y ≤ 2

}
.

(4.12)

We note that, since g is a continuous function, the area ∆Ri of each rectangle is a
function of ε. Let A(ε) represent,

A(ε)=max
{
∆Ri, i= 1, . . . ,6

}
. (4.13)



A BOUNDARY VALUE PROBLEM FOR THE WAVE EQUATION 841

y

2

η

η′

σ ′ σ x

Figure 1. The regions Ri.

The difference |G(P1;x,y)−G(P2;x,y)| takes on the following values in T .

∣∣G(P1; x,y)−G(P2; x,y)
∣∣=

∣∣∣∣ 1
1−α

∣∣∣∣, (x,y)∈ R1∪R2∪R3,

∣∣G(P1; x,y)−G(P2; x,y)
∣∣=

∣∣∣∣ α
1−α

∣∣∣∣, (x,y)∈ R4∪R5∪R6,

∣∣G(P1; x,y)−G(P2; x,y)
∣∣= 0, (x,y)∈ T −

6⋃
i=1

Ri.

(4.14)

Let

M′ =max
T

∣∣G(P1; x,y)−G(P2; x,y)
∣∣=max

{∣∣∣∣ 1
1−α

∣∣∣∣,
∣∣∣∣ α

1−α
∣∣∣∣
}

(4.15)

which is independent of P1 and P2. Then we have,

∫∫
T

∣∣G(P1; x,y)−G(P2; x,y)
∣∣2pdxdy ≤M ′2

∑
i

∫∫
Ri

pdxdy ≤ 6M
′2‖p‖∞A(ε). (4.16)

The inequalities (4.10), (4.11), and (4.16) imply that

∣∣Kφ(P1)−Kφ(P2)
∣∣≤ δ(ε), (4.17)

where δ(ε) = 6L′M′2‖p‖∞A(ε). This shows that the set {Kφ} is equicontinuous.
Therefore, by Arzela’s theorem {Kφ} has a uniformly convergent subset. But uniform
convergence implies convergence in ‖·‖p2 norm. Hence, K maps a bounded subset of
B to a compact set, i.e., K is a compact operator.

Now, we are in a position to discuss the spectrum ofK. We note first that, the conjugate
operator K∗ is generated by the kernel G(x,y ;σ,η), and therefore is bounded. This
suffices to imply that K∗K is compact. Furthermore, if we equip the space B with the
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inner product

(
φ,ψ

)=
∫∫
T

φψpdxdy, (4.18)

the operator K∗K is also selfadjoint and positive over B. The eigenvalues of K∗K are
positive and countable. We let J be the index set of the eigenvalues of K∗K and call µj ,

µj =
√
λj, j ∈ J (4.19)

the singular values of K. Also, �(K) will represent the space of functions in Lp2 (T)
that are mapped to zero by K [6],

�(K)= {φ :Kφ= 0}. (4.20)

We have the following theorem [6, 9]

Theorem 4.2 (Singular Value Decomposition). Let µ1 ≥ µ2 ≥ µ3 ··· > 0 be the or-
dered sequence of positive singular values of K, counted relative to its multiplicity. Then
there exists orthonormal systems (φj) and (ψj) both subsets of Lp2 (T) with the follow-
ing properties:

Kφj = µjψj and K∗ψj = µjφj for all j ∈ J. (4.21)

The system (µj,φj,ψj) is called the singular system of K. Every φ in Lp2 (T) pos-
sesses the singular value decomposition

φ=φ0+
∑
j∈J

(
φ,φj

)
φj (4.22)

for some φ0 ∈�(K) and

Kφ=
∑
j∈J

µj
(
φ,φj

)
ψj. (4.23)

A necessary and sufficient condition for the existence of a solution of equation (4.5)
is given by a theorem of Picard [6].

Theorem 4.3. Let (µj,vj,uj) be a singular system for the compact operator K. A
necessary and sufficient condition for the equation (4.5) to be solvable is that

v ∈�(K∗)⊥ and
∑
j∈J

1

µ2
j

∣∣(v,uj
)∣∣2 <∞. (4.24)

In this case

v =
∑
j∈J

1
µj

(
v,uj

)
vj (4.25)

is a solution of equation (4.5).

4.2. The datum along Γ is not identically zero. We now turn to the more general
case where the datum along the curve y = g(x) is not identically zero and the right-
hand side of (3.2) depends on v . The problem we are considering is
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vxy = λ′pv, (x,y)∈ T , (4.26)

v
(
σ,g(σ)

)−v(0,g(σ))=α(v(σ,2)−v(0,2)), 0≤ σ ≤M, (4.27)

v
(
σ,g(σ)

)=ω(σ), 0≤ σ ≤M. (4.28)

The method of Section 3 shows that the solution of (4.26), (4.27), and (4.28) is given
by the nonhomogeneous integral equation

v
(
σ,η

)=ω(g−1(η))+λ′
∫∫
T

G(σ,η; x,y)pvdxdy,
(
σ,η

)∈ T . (4.29)

Employing the operator notation of (4.5), we can rewrite equation (4.29) in the form

v =ω+λ′Kv. (4.30)

For the discussion on the existence of a solution to (4.30), we use Fredholm Alternative
theorem [2, 9] for compact operators. We first note that the problem conjugate to
(4.26), (4.27), and (4.28) is of the form

v′xy = λ′pv′, (x,y)∈ T , (4.31)

v′
(
σ,g(σ)

)−v′(0,g(σ))= 1
α
(
v′(σ ,2)−v′(0,2)), 0≤ σ ≤M, (4.32)

v′
(
σ,g(σ)

)=ω′(σ), 0≤ σ ≤M. (4.33)

The solution of (4.31), (4.32), and (4.33) is

v′
(
σ,η

)=ω′(g−1(η))
+λ′

∫∫
T

G∗(σ ,η; x,y)p(x,y)v′(x,y)dxdy,
(
σ,η

)∈ T , (4.34)

as it can be verified by direct substitution. We write (4.34) in the abbreviated form

v′ =ω′ +λ′K∗v′, (4.35)

and state the following result

Theorem 4.4. The nonhomogeneous equations

v =ω+λ′Kv, (4.36)

v′ =ω′ +λ′K∗v′, (4.37)

have unique solutions for anyω, andω′ in B, if and only if the homogeneous equations

v = λ′Kv, (4.38)

v′ = λ′K∗v′, (4.39)

have only the zero solutions. Furthermore, if one of the homogeneous equations has a
nonzero solution, then they both have the same finite number of linearly independent
solutions. In this case the equations (4.36) and (4.37) have solutions if and only if ω
and ω′ are orthogonal to all solutions of (4.39) and (4.38), respectively. Moreover, the
general solution for (4.36) is found by adding a particular solution of (4.36) to the
general solution of (4.38).
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5. Higher dimensions. The extension of the boundary value problem (1.1), (1.2),
and (1.3) to analogous selfadjoint problems in higher dimensions is also of much
interest. In [8], the equation (1.1) in n-dimensional space

L=utt−∆u= λu, (5.1)

is considered. It is shown there that, in a characteristic cone, it is possible to construct
symmetric Green functions which will convert the operator L of (5.1) to a selfadjoint
integral operator. However, the boundary values that give rise to such selfadjoint prob-
lems are not known. In [4], a two space dimensional extension of (1.1) with boundary
conditions analogous to (1.2) and (1.3) is studied. Here, we give an example of an
n-dimensional boundary value problem that can be reduced to (1.1), (1.2), and (1.3),
due to its special form and radial symmetry. Let x ∈ Rn have the Euclidean norm
|x| = r . Let f ∈ C1(0,1) be the function of Section 2. Define Ω ⊆Rn×R by

Ω = {(x,t) : t ≤ |x| ≤ f(t), 0≤ t ≤ a}∪{(x,t) : t ≤ |x| ≤ 2−t, a≤ t ≤ 1
}
. (5.2)

The characteristic surfaces C1,C2 and noncharacteristic Γ are defined by

C1 =
{
(x,t) : r = t, 0≤ t ≤ 1

}
, (5.3)

C2 =
{
(x,t) : r = 2−t, 0≤ t ≤ 1

}
, (5.4)

Γ = {(x,t) : r = f(t), 0≤ t ≤ a}. (5.5)

The points S1–S4 of Section 2 correspond to (n−1)-spheres that lie on the boundary
of Ω. Let α≠ 1, 0, be a constant in R. Consider the boundary value problem

utt−∆u− (n−1)(n−3)
4|x|2 u= F(|x|, t), (x,t)∈Ω, (5.6)

u|S1−u|S2 =α
(
u|S3−u|S4

)
, 0≤ τ ≤ 1, (5.7)

u|Γ =ω(t), 0≤ t ≤ a. (5.8)

Assume that u(x,t)=u(r ,t), and make the change of variables to polar coordinates.
Equation (5.6) becomes

utt−urr −
(
n−1
r

)
ur − (n−1)(n−3)

4r 2
u= F(r ,t). (5.9)

Upon further change of variable r (1−n)/2u=U we have

Utt−Urr = r (n−1)/2F(r ,t). (5.10)

Equation (5.10) along with conditions (5.7) and (5.8) can be treated by the proce-
dures of Sections 2 and 3. The only difference now is that when dealing with the
case F(r ,t)= λp(r ,t)u, the factor rn−1 appears on the right-hand side of (5.10), i.e.,
we will have

Utt−Urr = λrn−1p(r ,t)U. (5.11)

However, since this factor is continuous over Ω, it does not pose any new difficulty.
We can modify the weight function to P(r ,t) = rn−1p(r ,t), proceed as before and
obtain the results of Section 4.
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