RESEARCH NOTES

A SIMPLE CHARACTERIZATION OF COMMUTATIVE H^* -ALGEBRAS

PARFENY P. SAWOROTNOW

(Received 23 March 1998)

ABSTRACT. Commutative H^* -algebras are characterized without postulating the existence of Hilbert space structure.

Keywords and phrases. H^* -algebra, commutative H^* -algebra, maximal regular ideals, multiplicative linear functionals, Gelfand transform, completely symmetric algebra.

1991 Mathematics Subject Classification. 46K15, 46J40.

1. Introduction. Let \mathfrak{M} be the space of all maximal regular ideals in a commutative H^* -algebra A and let x(M), $M \in \mathfrak{M}$, denote the Gelfand transform of x, Loomis [3] (in the sequel we use notation of Naimark [5]). Then it is easy to show (see Theorem 1 below) that the series $\sum x(M)\bar{y}(M)$ converges absolutely for all $x, y \in A$. Also, if we assume that each minimal self-adjoint idempotent in A has norm one, then it is true that for each bounded linear function f on $A(f \in A^*)$ there exists $a \in A$ such that $f(x) = \sum x(M)\bar{a}(M)$ for all $x \in A$.

In this note we show that these properties could be used to characterize commutative proper H^* -algebras of this kind. More specifically we show that each semi-single completely symmetric, Naimark [5], Banach algebra with the above properties is a proper H^* -algebra with respect to some Hilbertian norm which is equivalent to its original norm. Also, there is a characterization of *all* proper commutative H^* -algebras.

2. Characterizations. Let *A* be a complex commutative Banach algebra. We do not assume that *A* has an identity and so, because of this, we have to deal with regular maximal ideals. An ideal *I* in *A* is regular if the algebra A/I has an identity. If *M* is maximal regular ideal then it is closed and the algebra A/M is isomorphic to the complex field (Gelfand-Mazur theorem, complex case, Loomis [3, 22F]). It follows that there exists a continuous linear functional F_M , Loomis [3, 23B], such that $M = \{x \in A : F_M(x) = 0\}$, i.e., *M* is the kernel (null space) of F_M .

The Gelfand transform x() (we use the Naimark's notion, Naimark [5], here) of x is defined by setting $x(M) = F_M(x)$ (Loomis uses the notion x^{\wedge} in Loomis [3, 23B]), where M is a regular maximal ideal in A.

The algebra *A* is said to be semi-simple if $\cap_{M \in \mathfrak{M}} M = (0)$ (as it is stated above, \mathfrak{M} denotes the space of all maximal regular ideals as *A*). Equivalent condition: mapping $x \to x()$ is one to one. The algebra *A* is said to be completely symmetric, Naimark [5],

if it has an involution $x \to x^*$ such that $x^*(M) = \bar{x}(M)$ for all $M \in \mathfrak{M}$.

More details of Gelfand theory could be found in Gelfand-Raikov-Silov [2], Loomis [3], Mackey [4], Naimark [5], Simmons [7], and others.

A proper H^* -algebra is a Banach algebra A with an involution $x \to x^*$ and a scalar product (,) such that $(x,x) = ||x||^2$ and $(xy,z) = (y,x^*z) = (x,zy^*)$ for all $x, y, z \in A$. Note that A is semi-simple. For simplicity, a nonzero self-adjoint idempotent will be called projection (e.g., Saworotnow [6]). A projection e is minimal if it is not a sum of two projections whose product is zero.

A completely symmetric commutative Banach algebra is a Banach algebra with involution $x \to x^*$ such that $x^*(M) = \bar{x}(M)$ for all $x \in A$ and $M \in \mathfrak{M}$, Naimark [5, Sec. 14].

THEOREM 1. Each proper commutative H^* -algebra A is completely symmetric in the sense of Naimark [5]. Also, the series $\sum_{M \in \mathfrak{M}} |x(M)|^2$ converges for each $x \in A$ and if we assume that each minimal projection in A has norm one, then each bounded linear functional f on $A(f \in A^*)$ has the form $f(x) = \sum x(M)\overline{a}(M)(x \in A)$ for some $a \in A$.

PROOF. First and second parts of the theorem follow from Loomis [3, 27G]. For each $M \in \mathfrak{M}$ there exists a minimal projection e_M such that $x(M) = (x, e_M) ||e_M||^{-2}$, $x = \sum_{M \in \mathfrak{M}} x(M) \times e_M$ and $e_{M_1} e_{M_2} = 0$ if $M_1 \neq M_2$ (Loomis [3] uses notation " e_{α} " instead of " e_M "). Note that $||e_M|| \ge 1$ for each $M \in \mathfrak{M} (||e_M|| = ||e_M^2|| \le ||e_M||^2)$.

It follows that $||x||^2 = \sum_{M \in \mathfrak{M}} |x(M)|^2 ||e_M||^2 \ge \sum_{M \in \mathfrak{M}} |x(M)|^2$. The last part follows from Loomis [3, 10G]: If we assume that each minimal projection has norm one, then $||x||^2 = \sum_{M \in \mathfrak{M}} |x(M)|^2$ and $(x, a) = \sum_{M \in \mathfrak{M}} x(M) \bar{a}(M)$ for all $x, a \in A$ (and there exists $a \in A$ such that f(x) = (x, a) for all $x \in A$).

Now we have a characterization of those commutative H^* -algebra in which each minimal projection has norm one.

THEOREM 2. Let *A* be a semi-simple commutative completely symmetric Banach algebra. Assume further that the series $\sum_{M \in 20} |x(M)|^2$ converges for each $x \in A$ and that for each bounded linear functional f on A there exists $a \in A$ such that $f(x) = \sum_{M \in 20} x(M)\bar{a}(M)$ for all $x \in A$. Then there exists a Hilbertian norm $|| ||_2$ on A, equivalent to the original norm such that A is an H^* -algebra with respect to the scalar product (,) associated with $|| ||_2$ and the original involution. Also, each minimal projection in A has norm 1.

PROOF. For each $x, y \in A$, define $(x, y) = \sum_{M \in \mathfrak{M}} x(M) \overline{y}(M)$. This series converges absolutely for all $x, y \in A$, since

$$\sum_{i=1}^{k} |x(M_i)\bar{y}(M_i)| \leq \frac{1}{2} \left(\sum_{i=1}^{k} |x(M_i)|^2 + \sum_{i=1}^{k} |y(M_i)|^2 \right)$$
(2.1)

for each finite subset $\{M_1, \ldots, M_k\}$ of \mathfrak{M} . Hence, the inner product (,) is defined everywhere on *A*. Let $|| ||^2$ be the corresponding norm, $||x||_2^2 = (x, x)$ for all $x \in A$. Let us show that *A* is complete with respect to $|| ||_2$.

First, note that the completion A' of A with respect to $|| ||_2$ is a proper H^* -algebra (since $||x^*||_2 = ||x||_2$ for all $x \in A$). Hence, A' is semi-simple. (It is a consequence of

886

Loomis [3, 27A].) So we can apply [5, Sec. 12, Thm. 1]: there exists C > 0 such that $||x||_2 \le C ||x||$ for all $x \in A$.

Now, let $\{a_n\}$ be a sequence of numbers of *A* such that $\lim_{m,n} ||a_n - a_m||_2 = 0$. Then there exists $\mathfrak{N} > 0$ such that $||a_n||_2 \leq \mathfrak{N}$ for each *n*. For each fixed $x \in A$ define

$$f(x) = \lim_{m \to \infty} (x, a_m).$$
(2.2)

From $|(x, a_m)| < ||x||_2 ||a_m||_2 \le \mathfrak{N}C ||x||$ we conclude that *f* is a bounded linear functional on *A*. Hence, there exists $a \in A$ so that $f(x) = \sum_{M \in \mathfrak{M}} x(M) \bar{a}(M)$ for each $x \in A$. Let us show that $||a-a_n||_2 \to 0$. Let $\epsilon > 0$ be arbitrary, take n_0 so that $||a_m-a_n||_2 < \epsilon/2$ if $m, n > n_0$. Let $n > n_0$ and $x \in A$ be fixed. Then $||a - a_n||_2^2 = |(a - a_n, a - a_n)| \le |(a - a_n, a$ $|a_n, a - a_m|| + |(a - a_n, a_m - a_n)| \le |f(a - a_n) - (a - a_n, a_m)| + ||a - a_n||_2 ||a_m - a_n||_2.$ Select $m > n_0$ so that

$$|f(a-a_n) - (a-a_n, a_m)| \le \frac{\epsilon}{2} ||a-a_n||_2.$$
 (2.3)

Thus

$$\|a - a_n\|_2^2 \le \frac{\epsilon}{2} \|a - a_n\|_2 + \frac{\epsilon}{2} \|a - a_n\|_2 = \epsilon \|a - a_n\|_2,$$
(2.4)

and this implies that $||a - a_n||_2 < \epsilon$ for each $n > n_0$. So, A is complete with respect to $|| ||_2$.

It follows from [5, Sec. 12, Thm. 1] that the norm $\| \|_2$ and the original norm $\| \|$ on A are equivalent.

It is also easy to see that A is an H^* -algebra with respect to the scalar product (,) (and the original involution).

Let us show that every minimal projection in A has norm one. First note that the product of any two distinct minimal projections e_1 and e_2 is zero, $e_1e_2 = 0$. It follows from the fact that $e = e_1 e_2$ is also a projection and that $ee_i = e_i$, i = 1, 2. This means that if $e \neq 0$, then both $e = e_1$ and $e = e_2$, which is impossible, since $e_1 \neq e_2$. Thus $e_{M_1}e_{M_2} = 0$ if $M_1 \neq M_2$ (as was remarked in a proof above). But this also means that every minimal projection *e* is of the form $e = e_{M'}$ for some $M' \in \mathfrak{M}$. It follows then that e(M') = 1 and e(M) = 0 if $M \neq M'$. Thus $||e||_2^2 = |e(M')|^2 = 1$.

For the general case we have Theorems 3 and 4 below, which constitute a characterization of any proper commutative H^* -algebra. The characterization is stated in terms of multiplicative functionals (it could also be done in terms of ideals) (needless to say, Theorems 1 and 2 could be restated in terms of multiplicative functionals also).

THEOREM 3. For each proper commutative H*-algebra A there exists a real valued function k(q), defined on the set Q of all its continuous multiplicative linear functionals, with the following properties :

(i) $k(q) \ge 1$ for each $q \in Q$.

(ii) The series $\sum_{q \in Q} |q(x)|^2 k(q)$ converges for each $x \in A$.

(iii) For each $f \in A^*$ there exists $\alpha \in A$ such that $f(x) = \sum_{q \in Q} q(x)\bar{q}(a)k(q)$ for each $x \in A(A^*$ denotes the dual of A).

PROOF. It is easy consequence of Loomis [3, 27G] that for each nonzero member q of Q there exists a unique minimal projection e_q such that $q(x) = (x, e_q) ||e_q||^{-2}$ and

$$x = \sum_{q \in Q} q(x)e_q \tag{2.5}$$

for each $x \in A$ (note that $\{e_q\}_{q \neq 0}$ is an orthogonal basis for A). We define the function k(q) by setting $k(q) = ||e_q||^2$ for each nonzero member q of Q and k(0) = 1. We leave it to the reader to verify that k(q) has desired properties.

THEOREM 4. Let *A* be a semi-simple commutative completely symmetric algebra and let *Q* be the set of all its continuous multiplicative linear functionals. Assume that there exists a real valued function k(q) on *Q* with properties (i), (ii), and (iii) in Theorem 3.

Then A is an H^* -algebra with respect to some Hilbert space norm $|| ||_2$ equivalent to the original norm of A, and the original involution.

PROOF. Define the scalar product (,) on *A* by setting

$$(x, y) = \sum_{q \in Q} q(x)q(y^*)k(q), \qquad (2.6)$$

and take that corresponding norm $|| ||_2$ (with the property that $(x, x) = ||x||_2^2$). Then we proceed as in the proof of Theorem 2.

REFERENCES

- W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386. MR 7,126c. Zbl 060.26906.
- [2] I. M. Gelfand, D. A. Raikov, and G. E. Silov, *Kommutativnye normirovannye koltsa. [Commutative normed rings]*, Sovremennye Problemy Matematiki, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960 (Russian). MR 23#A1242. Zbl 134.32102.
- [3] L. H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto, New York, London, 1953. MR 14,883c. Zbl 052.11701.
- [4] G. W. Mackey, *Commutative Banach algebras*, Notas Mat. No. 17 (1959), 210. MR 21#5909. Zbl 086.31203.
- [5] M. A. Naimark, *Normed rings*, P. Noordhoff N. V., Groningen, 1964, Translated from the first Russian edition by Leo F. Boron. MR 34#4928. Zbl 137.31703.
- [6] P. P. Saworotnow, On a generalization of the notion of H*-algebra, Proc. Amer. Math. Soc. 8 (1957), 49–55. MR 19,47a. Zbl 087.11402.
- [7] G. F. Simmons, Introduction to topology and modern analysis, McGraw-Hill Book Co., Inc., New York, 1963. MR 26#4145. Zbl 105.30603.

SAWOROTNOW: DEPARTMENT OF MATHEMATICS, THE CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, DC 20064, USA

888