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1. Introduction. Let2V) be the space of all maximal regular ideals in a commutative
H*-algebra A and let x(M), M € ), denote the Gelfand transform of x, Loomis [3] (in
the sequel we use notation of Naimark [5]). Then it is easy to show (see Theorem 1
below) that the series > x(M)y (M) converges absolutely for all x,y € A. Also, if we
assume that each minimal self-adjoint idempotent in A has norm one, then it is true
that for each bounded linear function f on A(f € A*) there exists a € A such that
f(x)=>x(M)a(M) for all x € A.

In this note we show that these properties could be used to characterize commuta-
tive proper H*-algebras of this kind. More specifically we show that each semi-single
completely symmetric, Naimark [5], Banach algebra with the above properties is a
proper H*-algebra with respect to some Hilbertian norm which is equivalent to its
original norm. Also, there is a characterization of all proper commutative H*-algebras.

2. Characterizations. Let A be a complex commutative Banach algebra. We do not
assume that A has an identity and so, because of this, we have to deal with regular
maximal ideals. An ideal I in A is regular if the algebra A/I has an identity. If M
is maximal regular ideal then it is closed and the algebra A/M is isomorphic to the
complex field (Gelfand-Mazur theorem, complex case, Loomis [3, 22F]). It follows that
there exists a continuous linear functional Fy;, Loomis [3, 23B], such that M = {x €
A:Fy(x) =0}, ie., M is the kernel (null space) of F,.

The Gelfand transform x() (we use the Naimark’s notion, Naimark [5], here) of x
is defined by setting x (M) = Fy(x) (Loomis uses the notion x” in Loomis [3, 23B]),
where M is a regular maximal ideal in A.

The algebra A is said to be semi-simple if Ny M = (0) (as it is stated above, 20
denotes the space of all maximal regular ideals as A). Equivalent condition: mapping
x — x() is one to one. The algebra A is said to be completely symmetric, Naimark [5],
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if it has an involution x — x* such that x* (M) = x (M) for all M € 0.

More details of Gelfand theory could be found in Gelfand-Raikov-Silov [2], Loomis [3],
Mackey [4], Naimark [5], Simmons [7], and others.

A proper H*-algebra is a Banach algebra A with an involution x — x* and a scalar
product (, ) suchthat (x,x) = ||x||?and (xy,z) = (v,x*z) = (x,zy*) forall x,y,z €
A. Note that A is semi-simple. For simplicity, a nonzero self-adjoint idempotent will
be called projection (e.g., Saworotnow [6]). A projection e is minimal if it is not a sum
of two projections whose product is zero.

A completely symmetric commutative Banach algebra is a Banach algebra with invo-
Iution x — x* such that x* (M) = x(M) for all x € A and M €20, Naimark [5, Sec. 14].

THEOREM 1. FEach proper commutative H*-algebra A is completely symmetric in
the sense of Naimark [5]. Also, the series > ey | X (M)|? converges for each x € A and
if we assume that each minimal projection in A has norm one, then each bounded linear
functional f on A(f € A*) has the form f(x) = > x(M)a(M)(x € A) for somea € A .

PROOF. First and second parts of the theorem follow from Loomis [3, 27G]. For
each M € 2 there exists a minimal projection ey such that x (M) = (x,en)llem| 72,
X = Dyew X (M) Xxeym and ey, en, = 01if My # M> (Loomis [3] uses notation “ey” instead
of “ey”). Note that |ley | = 1 for each M € W (ley || = lle3, |l < lleall?).

It follows that [|x||1? = Y yemw |X (M) 1% lleamll? = 3 pem | (M) 2. The last part follows
from Loomis [3, 10G]: If we assume that each minimal projection has norm one, then
)12 = X e | X (M) |2 and (x,a) = > pep X (M)a(M) for all x,a € A (and there exists
a € A such that f(x) = (x,a) for all x € A). O

Now we have a characterization of those commutative H*-algebra in which each
minimal projection has norm one.

THEOREM 2. Let A be a semi-simple commutative completely symmetric Banach al-
gebra. Assume further that the series > ey |x(M)|? converges for each x € A and
that for each bounded linear functional f on A there exists a € A such that f(x) =
S yewX(M)a(M) for all x € A. Then there exists a Hilbertian norm || ||» on A, equiva-
lent to the original norm such that A is an H* -algebra with respect to the scalar product
(, ) associated with || ||» and the original involution. Also, each minimal projection in A
has norm 1.

PROOF. Foreach x,y € A, define (x,y) = > yem X (M) ¥ (M). This series converges
absolutely for all x,y € A, since

k

k k
> [ (Mi) 3 (M) | sé(z UDIEEDS Iy(Mi)lz) 2.1)

i=1 i=1

for each finite subset {My,...,M} of 0. Hence, the inner product (, ) is defined ev-
erywhere on A. Let || ||2 be the corresponding norm, ||x||§ = (x,x) for all x € A. Let us
show that A is complete with respect to || ||2.

First, note that the completion A" of A with respect to || [|> is a proper H*-algebra
(since ||x*||2 = |Ix||2 for all x € A). Hence, A’ is semi-simple. (It is a consequence of
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Loomis [3, 27A].) So we can apply [5, Sec. 12, Thm. 1]: there exists C > 0 such that
x> < Cllx|| for all x € A.

Now, let {a,,} be a sequence of numbers of A such that limy, , lan —amll2 = 0. Then
there exists 21 > 0 such that ||a, ||, < for each n. For each fixed x € A define

fx)= 7111930 (x,am). (2.2)

From |(x,am)| < lIxll2llamll2 <NC|lx|| we conclude that f is a bounded linear func-

tional on A. Hence, there exists a € A so that f(x) = > yem X (M)a(M) for each x € A.

Let us show that ||a—a |l — 0. Let € > 0 be arbitrary, take ng so that ||a,, —anll» <€/2

if m,n > ng. Let n > ng and x € A be fixed. Then IIa—anH§ =|(a-an,a—ay)| < |(a-

an,a—am)|+(a-an,am—an)l <1f(a-an)—(a-an,am)l +lla-anl2llam—anll.
Select m > ny so that

€
|f(a_an)_(a_an;am)| SE”a_an”} (2.3)
Thus
€ €
la—anll} < E”u_an”Z +§|Ia—an\|z =ella-anll2, (2.4)

and this implies that ||a — a2 < € for each n > ng. So, A is complete with respect
to [ l2.

It follows from [5, Sec. 12, Thm. 1] that the norm || ||, and the original norm | || on
A are equivalent.

It is also easy to see that A is an H*-algebra with respect to the scalar product (, )
(and the original involution).

Let us show that every minimal projection in A has norm one. First note that the
product of any two distinct minimal projections e; and e; is zero, e;e; = 0. It follows
from the fact that e = eje; is also a projection and that ee; = e;, i = 1,2. This means
that if e # 0, then both e = e; and e = e, which is impossible, since e; + e>. Thus
em em, = 0 if My # M»> (as was remarked in a proof above). But this also means that
every minimal projection e is of the form e = ey for some M’ € W. It follows then
thate(M’) =1 and e(M) =0 if M = M’. Thus IIeIIE =le(M)|?=1. O

For the general case we have Theorems 3 and 4 below, which constitute a characteri-
zation of any proper commutative H*-algebra. The characterization is stated in terms
of multiplicative functionals (it could also be done in terms of ideals) (needless to say,
Theorems 1 and 2 could be restated in terms of multiplicative functionals also).

THEOREM 3. For each proper commutative H* -algebra A there exists a real valued
function k(q), defined on the set Q of all its continuous multiplicative linear functionals,
with the following properties :

(i) k(q) =1 foreachq € Q.

(ii) The series > ;cq lq(x) I2k(q) converges for each x € A.

(iii) For each f € A* there exists x € A such that f(x) = X, c0a(x)d(a)k(q) for
each x € A(A* denotes the dual of A).
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PROOF. It is easy consequence of Loomis [3, 27G] that for each nonzero member g
of Q there exists a unique minimal projection e, such that g(x) = (x,eg)lleq =2 and

x=> alx)eg (2.5)
a€Q

for each x € A (note that {e4}4+0 is an orthogonal basis for A). We define the function
k(q) by setting k(q) = |le4I? for each nonzero member g of Q and k(0) = 1. We leave
it to the reader to verify that k(q) has desired properties. O

THEOREM 4. Let A be a semi-simple commutative completely symmetric algebra and
let Q be the set of all its continuous multiplicative linear functionals. Assume that there
exists a real valued function k(q) on Q with properties (i), (ii), and (iii) in Theorem 3.

Then A is an H* -algebra with respect to some Hilbert space norm || ||, equivalent to
the original norm of A, and the original involution.

PROOF. Define the scalar product (,) on A by setting

(x,y)= > ax)a(y*)k(), (2.6)
aeQ

and take that corresponding norm || ||» (with the property that (x,x) = ||x||§ ). Then
we proceed as in the proof of Theorem 2. O
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