REGULARITY OF CONSERVATIVE INDUCTIVE LIMITS

JAN KUCERA

(Received 31 July 1998)

ABSTRACT. A sequentially complete inductive limit of Fréchet spaces is regular, see [3]. With a minor modification, this property can be extended to inductive limits of arbitrary locally convex spaces under an additional assumption of conservativeness.

Keywords and phrases. Regular and conservative inductive limits of locally convex spaces.

1991 Mathematics Subject Classification. Primary 46A13; Secondary 46A30.

Throughout the paper $E_1 \subset E_2 \subset \cdots$ is a sequence of Hausdorff locally convex spaces with continuous identity maps id : $E_n \to E_{n+1}$, $n \in N$. Their respective topologies are denoted by τ_n . The topology of their inductive limit ind E_n is denoted by $\tau = \operatorname{ind} \tau_n$.

We will use a result from [1, Cor. IV. 6.5]. It reads:

If *F* as well as all spaces E_n are Fréchet and $T : F \rightarrow \text{ind } E_n$ is a linear map with a closed graph, then there is $n \in N$ such that *T* is a continuous map of *F* into E_n .

According to [2, Sec. 5.2], the space ind E_n is called α -regular, resp. regular, if every set bounded in ind E_n is contained, resp. bounded, in some constituent space E_n . We will need a slightly modified notion of regularity.

DEFINITION 1. An inductive limit ind E_n is quasi α -regular, resp. quasi regular, if every set bounded in ind E_n is a subset of a τ -closure of a set contained, resp. bounded, in some constituent space E_n .

DEFINITION 2. An inductive limit ind E_n is called conservative if for every linear subspace $F \subset \text{ind } E_n$, we have

$$\operatorname{ind} (F \cap E_n, \tau_n) = (F, \operatorname{ind} \tau_n). \tag{1}$$

LEMMA. Let a locally convex (Hausdorff) space *E* be sequentially complete, and *B* be a balanced, bounded, closed, and convex set in *E*. Then the linear span *F* of *B*, equipped with the topology generated by the Minkowski functional of *B*, is a Banach space and the identity map $id: F \rightarrow E$ is continuous.

PROOF. Clearly *F* is a normed space and id : $F \rightarrow E$ is continuous.

To prove the completeness of *F*, take a Cauchy sequence $\{x_n\}$ in *F*. Since id : $F \to E$ is continuous, $\{x_n\}$ is Cauchy in *E*. Hence it converges to some $x \in E$. The set $\bigcup \{x_n; n \in N\}$, which is bounded in *F*, is contained in some αB . Since the set αB is closed in *E*, we have $x \in \alpha B \subset F$.

For any 0-nbhd λB , $\lambda > 0$, in *F*, there exists $k \in N$ such that m, n > k imply $x_n - x_m \in \lambda B$. If we let $m \to \infty$, we get $x_n - x \in \lambda B$ for n > k, i.e., $x_n \to x$ in *F*.

JAN KUCERA

PROPOSITION 1. Any sequentially complete ind E_n is quasi α -regular.

PROOF. Let a set *A* be bounded in ind E_n . Denote by *B* its balanced, convex, τ -closed hull, and by *F* the linear span of *B* with the same topology γ as in the Lemma. We know that *F* is a Banach space.

For any $n \in N$, denote by G_n the completion of the normed space $(F \cap E_n, \gamma)$. Then $G_n \subset F$ and F equals strict inductive limit ind G_n . Since B is bounded in F, it is bounded in ind G_n . Hence, by [1, Cor. IV. 6.5], B is bounded in some G_n .

Finally, $A \subset B$ and B is a γ -closure of a set $V = \bigcup \{E_n \cap \lambda B; 0 < \lambda < 1\}$ in $F \cap E_n$. Hence A is also a subset of the τ -closure of V in ind E_n .

PROPOSITION 2. Let ind E_n be sequentially complete and conservative. Then every set $A \subset E_1$, which is bounded in ind E_n is also bounded in some constituent space E_n .

PROOF. Take such *A* and assume that it is not bounded in any E_n . Then for any $n \in N$, there exists a balanced convex 0-nbhd U_n in E_n which does not absorb *A*. For any $m, n \in N$, choose $a_{m,n} \in A$ such that $a_{m,n} \notin mU_n$. Denote by *B* the τ -closure of the convex balanced hull of $\bigcup \{a_{m,n}; m, n \in N\}$ and by *F* the linear span of *B*. For any $m, n \in N$, there exists $f_{m,n} \in (\text{ind } E_n)'$, (the dual of $\text{ind } E_n$), such that $f_{m,n}(a_{m,n}) \neq 0$. Put $V_{m,n} = \{x \in F; |f_{m,n}(x)| \le 1\}$ and denote by F_n the linear space *F* equipped with the topology generated by $\{U_m; m \ge n\} \bigcup \{V_{m,n}; m, n \in N\}$. Then each F_n is a metrizable Hausdorff locally convex space and its completion G_n is a Fréchet space.

Finally, let *H* be the space *F* equipped with the topology generated by the Minkowski functional of *B*. The set *B* is bounded in ind E_n , hence, by the Lemma, *H* is Banach space and the identity map id : $H \rightarrow \text{ind } E_n$ is continuous.

Since ind E_n is conservative and $F \subset \text{ind } E_n$, we have

$$\operatorname{ind}(F,\tau_n) = (F,\operatorname{ind}\tau_n). \tag{2}$$

For any $n \in N$, the identity maps $(F, \tau_n) \rightarrow F_n \rightarrow G_n$ are continuous. Hence

$$\operatorname{id}:\operatorname{ind}(F,\tau_n) \longrightarrow \operatorname{ind} G_n \tag{3}$$

is continuous, too. Then, the continuity of $id : H \to ind E_n$ implies the continuity of $id : H \to (F, ind \tau_n)$. By (2) and (3), we finally get the continuity of $id : H \to ind G_n$.

By [1, Cor. IV. 6.5], there exists $n \in N$ such that $id : H \to G_n$ is continuous. Since the set *B* is bounded in *H* and contained in F_n , it is bounded in G_n , and also bounded in F_n . But then *B*, as well as its subset *A*, are absorbed by the 0-nbhd V_n in F_n , a contradiction.

By combining Propositions 1 and 2, we get

THEOREM. Any sequentially complete conservative ind E_n is quasi regular.

COROLLARY. If moreover each space E_n in the above Theorem is closed in ind E_n , then ind E_n is regular.

REFERENCES

 M. De Wilde, *Closed graph theorems and webbed spaces*, Research Notes in Mathematics, vol. 19, Pitman (Advanced Publishing Program), London, Boston, MA, 1978. MR 81j:46013. Zbl 373.46007.

- K. Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247 (1971), 155-195. MR 44#4478. Zbl 209.43001.
- [3] J. Kucera, Sequential completeness of LF-spaces, to appear in Czechoslovak Math. J.

KUCERA: DEPARTMENT OF MATHEMATICS, WASHINGTON STATE UNIVERSITY, PULLMAN, WASHINGTON 99164-3113, USA