SUBSEQUENCES AND CATEGORY

ROBERT R. KALLMAN

(Received 21 July 1998)

ABSTRACT. If a sequence of functions diverges almost everywhere, then the set of subsequences which diverge almost everywhere is a residual set of subsequences.

Keywords and phrases. Baire category, measure, measurable functions, sequences.

1991 Mathematics Subject Classification. 28A20, 54E52.

1. Introduction. In [1], Bilyeu, Lewis, and Kallman proved a general theorem about rearrangements of a series of Banach space valued functions. This theorem settled a question on rearrangements of Fourier series posed by Kac and Zygmund. Kallman [3] proved an analog of this theorem for subseries of a series of Banach space valued functions. The purpose of this paper is to complete the cycle of these ideas by proving an analogous theorem (Theorem 1.1) for subsequences of a sequence of Banach space valued functions. Theorem 1.1 does not seem to follow directly from results of [1] or [3]. Other than [1, 3], the only precedent for Theorem 1.1 seems to be a paper [7] on subsequences of a sequence of complex numbers.

Let S be the set of all sequences $s=(s_1,s_2,\ldots)$, where $1\leq s_1 < s_2 < \cdots$ is a strictly increasing sequence of positive integers. S is a closed subset of the countable product of the positive integers, and so S is a complete separable metric space. Given any sequence of objects a_1,a_2,\ldots , one can identify the set of its subsequences both as a set and as a topological space with S. In this context, it is natural to identify a collection of subsequences with a subset of S and ask if it is first category, second category, or residual ([5] or [6]). Define an equivalence relation \sim on S as follows: if $s,t\in S$, then $s\sim t$ if and only if $s_n=t_n$ for all sufficiently large n. Intuitively this states that $s\sim t$ if and only if s and t agree from some point on. It is simple to check that any nonempty subset of S which is saturated with respect to \sim is dense.

The main result of this paper is the following theorem, which is proved in Section 2.

THEOREM 1.1. Let (X, μ) be a regular locally compact σ -finite measure space, Z a separable Banach space, and $f_n: X \mapsto Z$ a sequence of Borel measurable functions. Suppose that the sequence $f_n(x)$ diverges for μ -a.e., $x \in X$. Then $[s \in S \mid f_{s_n}(x)]$ diverges for μ -a.e. $x \in X$ is a residual set in S.

Just as in [1, 3], this measure-category result has a category-category analog which is discussed in Section 3.

2. Proof of Theorem 1.1. The following special case of Theorem 1.1 will be proved first.

LEMMA 2.1. Let K be a compact Hausdorff space, Z a Banach space, and $f_n: K \mapsto Z$ a sequence of continuous functions, and $\delta > 0$. Suppose that for every $x \in K$ and positive integer N, there exists a pair of integers n = n(x,N) and m = m(x,N) so that $N \le n \le m$ and $\|f_m(x) - f_n(x)\| > \delta$. Then $[s \in S \mid f_{s_n}(x)]$ diverges for every $x \in K$ is a residual set in S.

PROOF. If m, n is a pair of integers such that $1 \le n \le m$ and $s \in S$, let $g_{s,m,n} : K \mapsto [0, +\infty)$ be defined by $g_{s,m,n}(x) = \|f_{s_m}(x) - f_{s_n}(x)\|$. $g_{s,m,n}$ is continuous. Consider

$$A = \bigcap_{N \ge 1} \bigcup_{N \le n_1 \le m_1, \dots, N \le n_p \le m_p} \left[s \in S \mid \bigcup_{1 \le i \le p} g_{s, m_i, n_i}^{-1} ((\delta, +\infty)) = K \right]. \tag{2.1}$$

Fix $1 \le n \le m$ and $s \in S$. Then $V = [t \in S \mid t_m = s_m \text{ and } t_n = s_n]$ is an open neighborhood of s in S. Hence, if $t \in V$, then $g_{t,m,n} = g_{s,m,n}$. This in turn implies that A is a G_{δ} subset of S. Furthermore, A is saturated with respect to the equivalence relation \sim and therefore is a dense G_{δ} if it is nonempty.

A is nonempty since t=(1,2,3,...) is in A. To see this, fix $N \ge 1$. For $N \le n \le m$, let $U(m,n)=g_{t,m,n}^{-1}((\delta,+\infty))$. Note that the collection $\{U(m,n)\}_{N\le n\le m}$ is an open covering of K by hypothesis and so has a finite subcover, say $U(m_1,n_1),...,U(m_p,n_p)$. One easily concludes from this that $t \in A$.

Finally, note that the Cauchy criterion for convergence implies that if $s \in A$, then $f_{s_n}(x)$ diverges for every $x \in K$. Hence, $A \subseteq [s \in S \mid f_{s_n}(x)]$ diverges for every $x \in K$. This proves Lemma 2.1.

PROOF OF Theorem 1.1. We may assume that μ is a probability measure since μ is σ -finite. If $q \ge 1$, let

$$D_{q} = \bigcap_{N \ge 1} \bigcup_{N \le n \le m} \left[x \in X \mid ||f_{m}(x) - f_{n}(x)|| > \frac{1}{q} \right].$$
 (2.2)

Each D_q is a Borel subset of X, $D_q \subseteq D_{q+1}$, and the Cauchy criterion for convergence implies that $\cup_{q \ge 1} D_q = [x \in X \mid f_n(x) \text{ diverges}]$. $\mu(\cup_{q \ge 1} D_q) = 1$ by assumption. Use a vector-valued version of Lusin's Theorem [2] to choose, for each q, a compact subset K_q of D_q so that each $f_n \mid K_q$ is continuous and $\mu(D_q - K_q) < 1/q$. $R_q = [s \in S \mid f_{s_n}(x)]$ diverges for every $x \in K_q$ is a residual subset of S by Lemma 2.1. Hence, $R = \cap_{q \ge 1} R_q$ is a residual set in S and is contained in $[s \in S \mid f_{s_n}(x)]$ diverges for μ -a.e., $x \in X$ since $\mu(\cup_{q \ge 1} K_q) = 1$. This proves Theorem 1.1.

3. Sequences of functions with the Baire property. Theorem 1.1 may be regarded as a measure-category result. The purpose of this section is to prove a category-category analog of Theorem 1.1 (cf. [1, Thm. 1.2] and [3, Thm. 3.1]).

Let X be a Polish space. A subset of X is said to have the Baire property if there exists an open set U in X so that $A \triangle U$ is first category. The collection of all subsets of X with the Baire property is a σ -algebra which includes the analytic sets in X. Let Z be any other Polish space. A function $f: X \mapsto Z$ is said to have the Baire property if U open in Z implies that $f^{-1}(U)$ has the Baire property in X. Any Borel function $f: X \mapsto Z$ is a function with the Baire property. See [4, 5] or [6] for a thorough discussion of this circle of ideas. The following theorem is then a category-category analog of Theorem 1.1.

THEOREM 3.1. Let X be a Polish space, Z a separable Banach space, and $f_n: X \mapsto Z$ a sequence of functions with the Baire property. Suppose that $[x \in X \mid f_n(x) \text{ diverges}]$ is a residual subset of X. Then $[s \in S \mid f_{s_n}(x) \text{ diverges on a residual subset of } X]$ is a residual subset of S.

The following proposition, of independent interest, is needed to prove Theorem 3.1.

PROPOSITION 3.2. Let Z be a Banach space and let $\{z_n\}_{n\geq 1}$ be a sequence in Z. Let $A = [s \in S \mid z_{s_n} \text{ converges}]$. Then either A = S or A is of first category in S.

PROOF. For $k \ge 1$ define

$$B_{k} = \bigcap_{N \ge 1} \bigcup_{N \le n \le m} \left[s \in S \mid ||z_{s_{m}} - z_{s_{n}}|| > \frac{1}{k} \right].$$
 (3.1)

Note that $B_k \subseteq B_{k+1}$. Each set in square brackets is open in S. Hence, this formula shows that B_k is a G_δ . B_k is dense if it is nonempty since it is saturated with respect to the equivalence relation \sim . Therefore, B_k is a residual set in S if it is nonempty since any dense G_δ is residual.

The Cauchy criterion for convergence implies that $A^c = \bigcup_{k \ge 1} B_k$. Hence, either A = S or A^c is residual in S; or either A = S or A is of first category in S. This proves Proposition 3.2.

PROOF OF Theorem 3.1. Check that the mapping $(x,s) \mapsto f_{s_n}(x)$, $X \times S \mapsto Z$, is a function with the Baire property for every $n \ge 1$. Hence,

$$B = [(x,s) \mid f_{s_n}(x) \text{ diverges}] = \bigcup_{k \ge 1} \bigcap_{N \ge 1} \bigcup_{N \le n \le m} \left[(x,s) \mid ||f_{s_m}(x) - f_{s_n}(x)|| > \frac{1}{k} \right]$$
(3.2)

is a subset of $X \times S$ with the Baire property. For each $x \in X$, let B_x^c be the projection of $B^c \cap ((x) \times S)$ onto S. The hypotheses of Theorem 3.1 plus Proposition 3.2 imply that each B_x^c is a first category subset of S, except for a first category set of S. But then S^c is itself a first category subset of S0, the projection of $S^c \cap (X \times (S))$ onto S0, is a first category subset of S0, except for a first category set of S1, except for a first category set of S2, the projection of $S^c \cap (X \times (S))$ onto S3, is a residual subset of S3, the projection of $S^c \cap (X \times (S))$ onto S3, is a residual subset of S4 for all except a first category set of S3. This proves Theorem 3.1.

REFERENCES

- R. G. Bilyeu, R. R. Kallman, and P. W. Lewis, *Rearrangements and category*, Pacific J. Math. 121 (1986), no. 1, 41-46. MR 87j:42019. Zbl 574.42007.
- [2] J. Diestel and J. J. Uhl, Jr., Vector measures, Mathematical Surveys, no. 15, American Mathematical Society, Providence, RI, 1977. MR 56 12216. Zbl 369.46039.
- [3] R. R. Kallman, Subseries and category, J. Math. Anal. Appl. 132 (1988), no. 1, 234–237. MR 89g:46074. Zbl 676.46004.
- [4] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 96e:03057. Zbl 819.04002.
- [5] K. Kuratowski, Topology. Vol. I., Academic Press, New York, London, 1966. MR 36#840. Zbl 158.40802.
- [6] J. C. Oxtoby, Measure and category, Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York, Berlin, 1980. MR 81j:28003. Zbl 435.28011.

[7] M. B. Rao, K. P. S. B. Rao, and B. V. Rao, Remarks on subsequences, subseries and rearrangements, Proc. Amer. Math. Soc. 67 (1977), no. 2, 293–296. MR 58 12068. Zbl 412.40001.

Kallman: Department of Mathematics, University of North Texas, P. O. Box 305118, Denton, Texas 76203-5118, USA