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Abstract. For given analytic functions φ(z) = z+∑∞m=2λmzm, ψ(z) = z+∑∞m=2µmzm

in U = {z | |z| < 1} with λm ≥ 0, µm ≥ 0 and λm ≥ µm, let En(φ,ψ;A,B) be the class of
analytic functions f(z)= z+∑∞m=2amzm in U such that (f ∗Ψ)(z)≠ 0 and

Dn+1(f ∗φ)(z)
Dn
(
f ∗Ψ)(z) � 1+Az

1+Bz , −1≤A< B ≤ 1, z ∈U,

where Dnh(z) = z(zn−1h(z))(n)/n!, n ∈ N0 = {0,1,2, . . .} is the nth Ruscheweyh de-
rivative; � and ∗ denote subordination and the Hadamard product, respectively. Let T
be the class of analytic functions in U of the form f(z) = z −∑∞m=2amzm, am ≥ 0,
and let En[φ,ψ;A,B] = En(φ,ψ;A,B)∩T . Coefficient estimates, extreme points, distor-
tion theorems and radius of starlikeness and convexity are determined for functions in
the class En[φ,ψ;A,B]. We also consider the quasi-Hadamard product of functions in
En[z/(1−z),z/(1−z);A,B] and En[z/(1−z)2, z/(1−z)2;A,B].

Keywords and phrases. Ruscheweyh derivatives, Hadamard product, subordination, quasi-
Hadamard product.
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1. Introduction. Let H denote the class of functions f(z) analytic in the unit disc
U = {z | |z| < 1} and normalized by f(0) = 0 and f ′(0) = 1. The Hadamard product
of two functions f(z)= z+∑∞

m=2amzm and g(z)= z+∑∞
m=2bmzm in H is given by

(
f ∗g)(z)= z+

∞∑
m=2

ambmzm. (1.1)

Let Dαf(z) = z/(1−z)α+1∗f(z),(α ≥ −1). Ruscheweyh [9] observed that Dnf(z) =
z(zn−1f(z))(n)/n! whenn∈N0 = {0,1,2, . . .}. This symbolDnf(z),n∈N0, was called
the nth Ruscheweyh derivative of f(z) by Al-Amiri [2]. Recently, several subclasses
of H have been introduced and studied by using either the Hadamard product or
Ruscheweyh derivatives (see [1, 4, 7, 8], etc.). To provide a unified approach to the
study of various properties of these classes, we introduce the following most general-
ized subclass of H by using both the Hadamard product and Ruscheweyh derivatives.

Definition 1.1. Given the functions

φ(z)= z+
∞∑

m=2

λmzm, ψ(z)= z+
∞∑

m=2

µmzm
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analytic in U such that λm ≥ 0, µm ≥ 0 and λm ≥ µm for m = 2,3, . . . , we say that
f ∈H is in the class En(φ,ψ;A,B) if (f ∗ψ)(z)≠ 0 and

Dn+1
(
f ∗φ)(z)

Dn
(
f ∗ψ)(z) � 1+Az

1+Bz , z ∈U, (1.2)

where � denote subordination, −1≤A< B ≤ 1 and n∈N0.
Let G be the class of functions w analytic in U and satisfy the conditions w(0)= 0

and |w(z)|< 1 for z ∈ U . By the definition of subordination, condition (1.2) is equiv-
alent to

Dn+1
(
f ∗φ)(z)

Dn
(
f ∗ψ)(z) = 1+Aw(z)

1+Bw(z)
, w ∈G. (1.3)

Let T denote the subclass of H consisting of functions of the form f(z) = z −∑∞
m=2amzm, am ≥ 0, and let En[φ,ψ;A,B] = En(φ,ψ;A,B)∩ T . It is easy to check

that various subclasses of T can be represented as En[φ,ψ;A,B] for suitable choices
of φ(z),ψ(z),A,B, and n. For example,

En
[

z
1−z ,

z
1−z ;A,B

]
= Sn[A,B],

En
[

z
(1−z)2

,
z

(1−z)2
;A,B

]
=Kn[A,B],

E0

[
z

(1−z)2(1−γ) ,
z

(1−z)2(1−γ) ;(2α−1)β,β
]
= Rγ[α,β],

E0

[
z

(1−z)2(1−γ) ,z;(2α−1)β,β
]
= Pγ[α,β], 0≤α< 1, 0< β≤ 1, 0≤ γ < 1,

En
[

z
(1−z) ,z;A,B

]
= Vn[A,B],

(1.4)

etc. The classes Sn[A,B] and Kn[A,B] were introduced and studied by Padmanabhan
and Manjini [8] whereas Rγ[α,β], Pγ[α,β], and Vn[A,B] were, respectively, studied by
Ahuja and Silverman [1], Owa and Ahuja [7], and Kumar [4]. Several other subclasses
of T , introduced and studied by Silverman [10], Silverman and Silvia [11], Gupta and
Jain [3], and others, can also be obtained from the class En[φ,ψ;A,B] by suitably
choosing φ(z),ψ(z),A,B, and n.

Now, we make a systematic study of the class En[φ,ψ;A,B]. It is assumed through-
out that φ(z) and ψ(z) satisfy the conditions stated in Definition 1.1 and that
(f ∗ψ)(z)≠ 0 for z ∈U .

2. Coefficient inequalities. In this section, we find a necessary and sufficient con-
dition for a function to be in En[φ,ψ;A,B] and, consequently, calculate coefficient
estimates for functions in En[φ,ψ;A,B].

Theorem 2.1. Let f(z)= z+∑∞
m=2amzm be inH. If, for someA,B(−1≤A< B ≤ 1),

∞∑
m=2

(m+n−1)!σm

(m−1)!(n+1)!
|am| ≤ B−A, n∈N0, (2.1)

where σm = (B+1)(m+n)λm−(A+1)(n+1)µm, then f ∈ En(φ,ψ;A,B).
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Proof. Suppose that condition (2.1) holds for all admissible values of A,B, and n.
In view of (1.3), it is sufficient to show that∣∣∣∣ Dn+1

(
f ∗φ)(z)−Dn(f ∗ψ)(z)

BDn+1
(
f ∗φ)(z)−ADn

(
f ∗ψ)(z)

∣∣∣∣< 1, z ∈U. (2.2)

For |z| = r , 0≤ r < 1, we have∣∣Dn+1(f ∗φ)(z)−Dn(f ∗ψ)(z)∣∣−∣∣BDn+1(f ∗φ)(z)−ADn(f ∗ψ)(z)∣∣
≤

∞∑
m=2

(m+n−1)!
(m−1)!(n+1)!

[
(m+n)λm−(n+1)µm

]|am|rm

−
{
(B−A)r −

∞∑
m=2

(m+n−1)!
(m−1)!(n+1)!

[
B(m+n)λm−A(n+1)µm

]|am|rm
}

<
[ ∞∑
m=2

(m+n−1)!
(m−1)!(n+1)!

[
(B+1)(m+n)λm−(A+1)(n+1)µm

]

×|am|−(B−A)
]
|z| ≤ 0,

(2.3)

in view of (2.1). Thus, (2.2) is satisfied and, hence, f ∈ En(φ,ψ;A,B).

Theorem 2.2. Let f ∈ T . Then f ∈ En[φ,ψ;A,B] if and only if (2.1) is satisfied.

Proof. In view of Theorem 2.1, it is sufficient to show the “only if” part. Thus, let
f ∈ En[φ,ψ;A,B]. Then, from (1.3), we get

∣∣w(z)
∣∣=

∣∣∣∣∣
∑∞

m=2
(m+n−1)!

(m−1)!(n+1)!
[
(m+n)λm−(n+1)µm

]|am|zm−1

(B−A)−∑∞
m=2

(m+n−1)!
(m−1)!(n+1)!

[
B(m+n)λm−A(n+1)µm

]|am|zm−1

∣∣∣∣∣< 1

(2.4)

and, therefore,

Re




∑∞
m=2

(m+n−1)!
(m−1)!(n+1)!

[
(m+n)λm−(n+1)µm

]|am|zm−1

(B−A)−∑∞
m=2

(m+n−1)!
(m−1)!(n+1)!

[
B(m+n)λm−A(n+1)µm

]|am|zm−1


< 1 (2.5)

for all z ∈ U . We consider real values of z and take z = r with 0 < r < 1. Then, for
r = 0, the denominator of (2.5) is positive and so is positive for all r , 0≤ r < 1. Then
(2.5) gives

∞∑
m=2

(m+n−1)!
(m−1)!(n+1)!

[
(B+1)(m+n)λm−(A+1)(n+1)µm

]|am|rm−1 < B−A. (2.6)

Letting r → 1−, we get (2.1).

Corollary 2.1. If f ∈ En[φ,ψ;A,B], then

am ≤ (m−1)!(n+1)!(B−A)
(m+n−1)!σm

for m= 2,3, . . . and n∈N0. (2.7)

The equality holds, for each m, for functions of the form

fm(z)= z− (m−1)!(n+1)!(B−A)
(m+n−1)!σm

zm, z ∈U. (2.8)
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Remark 2.1. Taking different choices of φ(z), ψ(z), A, B, and n as stated in
Section 1, the above theorems lead to necessary and sufficient conditions and, con-
sequently, coefficient inequalities for a function to be in Sn[A,B], Kn[A,B], Rγ[α,β],
Pγ[α,β], Vn[A,B], etc.

3. Closure theorems

Theorem 3.1. The class En[φ,ψ;A,B] is closed under convex linear combinations.

Proof. Let f ,g ∈ En[φ,ψ;A,B] and let f(z) = z − ∑∞
m=2amzm, g(z) = z −∑∞

m=2bmzm, am ≥ 0, bm ≥ 0. For η such that 0≤ η≤ 1, it is sufficient to show that the
function h, defined by h(z)= (1−η)f(z)+ηg(z), z ∈U , belongs to En[φ,ψ;A,B].

Since h(z)= z−∑∞
m=2[(1−η)am+ηbm]zm, applying Theorem 2.2, we get

∞∑
m=2

(m+n−1)!σm

(m−1)!(n+1)!

[(
1−η)am+ηbm

]

≤ (1−η) ∞∑
m=2

(m+n−1)!σm

(m−1)!(n+1)!
am+η

∞∑
m=2

(m+n−1)!σm

(m−1)!(n+1)!
bm

≤ (1−η)(B−A)+η(B−A)= (B−A).

(3.1)

This implies that h∈ En[φ,ψ;A,B].

From Theorem 3.1 it follows that the closed convex hull of En[φ,ψ;A,B] is the same
as En[φ,ψ;A,B]. Now, we determine the extreme points of En[φ,ψ;A,B].

Theorem 3.2. Let f1(z)=z,fm(z)=z−((m−1)!(n+1)!(B−A)/(m+n−1)!σm)zm,
m = 2,3, . . . ,z ∈ U , and n ∈ N0. Then f ∈ En[φ,ψ;A,B] if and only if it can be ex-
pressed as

f(z)=
∞∑

m=1

ρmfm(z), where ρm ≥ 0 and
∞∑

m=1

ρm = 1. (3.2)

Proof. Suppose that

f(z)=
∞∑

m=1

ρmfm(z)= z−
∞∑

m=2

ρm
(
(m−1)!(n+1)!(B−A)(m+n−1)!σm

)
zm. (3.3)

Since
∞∑

m=2

(m+n−1)!σm

(m−1)!(n+1)!(B−A) ρm
(m−1)!(n+1)!(B−A)

(m+n−1)!σm
=

∞∑
m=2

ρm = 1−ρ1 ≤ 1, (3.4)

it follows, from Theorem 2.2, that f ∈ En[φ,ψ;A,B].
Conversely, suppose that f(z)= z−∑∞

m=2amzm ∈ En[φ,ψ;A,B]. Since

am ≤ (m−1)!(n+1)!(B−A)
(m+n−1)!σm

, m= 2,3, . . . , (3.5)

we may set

ρm = (m+n−1)!σm

(m−1)!(n+1)!(B−A) am, m= 2,3, . . . ;n∈N0 and ρ1 = 1−
∞∑

m=2

ρm. (3.6)
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From Theorem 2.2, we have
∑∞

m=2ρm ≤ 1 and so ρ1 ≥ 0. It follows that f(z) =∑∞
m=1ρm fm(z).

Corollary 3.1. The extreme points of En[φ,ψ;A,B] are the functions fm(z),m=
1,2, . . . .

4. Distortion theorems. With the aid of Theorem 3.2, we may now find bounds on
the modulus of f(z) and f ′(z) for f ∈ En[φ,ψ;A,B].

Theorem 4.1. Let f ∈ En[φ,ψ;A,B] and σm = (B + 1)(m+n)λm − (A+ 1)(n+
1)µm, m = 2,3, . . . . If n, m, σm, σm+1 and |z| satisfy the condition

(m+n)σm+1−mσm|z| ≥ 0, (4.1)

then

max
{

0,|z|− B−A
σ2

|z|2
}
≤ ∣∣f(z)∣∣≤ |z|+ B−A

σ2
|z|2. (4.2)

The bounds are sharp.

Proof. By virtue of Theorem 3.2, we note that

∣∣f(z)∣∣≥max
{

0,|z|−max
m

(m−1)!(n+1)!(B−A)
(m+n−1)!σm

|z|m
}
,

∣∣f(z)∣∣≤ |z|+max
m

(m−1)!(n+1)!(B−A)
(m+n−1)!σm

|z|m
(4.3)

for z ∈U . Thus, it suffices to show that

J
(
A,B,n,m,σm,|z|)= (m−1)!(n+1)!(B−A)

(m+n−1)!σm
|z|m (4.4)

is a decreasing function of m(m≥ 2). It is easily seen that, for |z|≠ 0,

J
(
A,B,n,m,σm,|z|)≥ J

(
A,B,n,m+1,σm+1,|z|

)
(4.5)

if and only if

(m+n)σm+1−mσm|z| ≥ 0 (4.6)

which is (4.1). Hence,

max
m

J
(
A,B,n,m,σm,|z|) (4.7)

is attained at m= 2 and the proof is complete.

Finally, since the functions fm(z),m≥ 2, defined in Theorem 3.2, are extreme points
of the class En[φ,ψ;A,B], we can see that the bounds of the theorem are attained for
the function f2(z)= z−((B−A)/σ2)z2.
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Corollary 4.1 [1]. If f ∈ Rγ[α,β], 0≤α< 1, 0< β≤ 1, and either

0≤ γ ≤ (2+3β−αβ)
(2+4β−2αβ)

or |z| ≤ (1+2β−αβ)
(1+3β−2αβ)

, (4.8)

then

max
{

0,|z|− β(1−α)(
1−γ)[1+β(3−2α)

] |z|2}

≤ ∣∣f(z)∣∣≤ |z|+ β(1−α)(
1−γ)[1+β(3−2α)

] |z|2.
(4.9)

The bounds are sharp.

Proof. Choosing

φ(z)=ψ(z)= z
(1−z)2(1−γ) = z+

∞∑
m=2

C
(
γ,m

)
zm, (4.10)

where

C
(
γ,m

)=
(∏n

k=2

(
k−2γ

))
(m−1)!

, (4.11)

so that λm=µm=C(γ,m) together withA= (2α−1)β, B = β andn=0 in Theorem 4.1,
the bounds (4.2) reduces to (4.9) provided

mC
(
γ,m+1

)[
m+β(m+2−2α)

]
−mC

(
γ,m

)[
m−1+β(m+1−2α)

]|z| ≥ 0.
(4.12)

Since

C
(
γ,m+1

)= m+1−2γ
m

C
(
γ,m

)
, (4.13)

the above inequality reduces to

(
m+1−2γ

)[
m+β(m+2−2α)

]−m[m−1+β(m+1−2α)
]|z| ≥ 0. (4.14)

Now, proceeding exactly on the lines of Ahuja and Silverman [1], the result follows.

Corollary 4.2 [7]. If f ∈ Pγ[α,β],0 ≤ α < 1, 0 < β ≤ 1, and either 0 ≤ γ ≤ 5/6 or
|z| ≤ 3/4, then

max
{

0,|z|− β(1−α)
2
(
1−γ)(1+β) |z|2

}
≤ ∣∣f(z)∣∣≤ |z|+ β(1−α)

2
(
1−γ)(1+β) |z|2. (4.15)

The bounds are sharp.

Proof. Taking

φ(z)= z
(1−z)2(1−γ) = z+

∞∑
m=2

C
(
γ,m

)
zm, ψ(z)= z, (4.16)
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so that λm = C(γ,m) and µm = 0 together with A = (2α−1)β, B = β and n = 0 in
Theorem 4.1, the bounds (4.2) reduces to (4.15) provided

m(m+1)
(
1+β)C(γ,m+1

)−m2(1+β)C(γ,m)|z| ≥ 0. (4.17)

Using

C
(
γ,m+1

)= m+1−2γ
m

C
(
γ,m

)
, (4.18)

the above inequality reduces to

(m+1)
(
m+1−2γ

)−m2|z| ≥ 0. (4.19)

Now, proceeding exactly on the lines of Owa and Ahuja [7], the result follows.

Corollary 4.3 [8]. Let f ∈ Sn(A,B),−1≤A< B ≤ 1 and

cm = (B+1)(m+1)−(A+1)(n+1), m= 2,3, . . . . (4.20)

Then

max
{

0,|z|− B−A
c2

|z|2
}
≤ ∣∣f(z)∣∣≤ |z|+ B−A

c2
|z|2. (4.21)

The bounds are sharp.

Proof. Choosing φ(z) =ψ(z) = z/(1−z) = z+∑∞
m=2zm in Theorem 4.1 so that

λm = µm = 1 for m≥ 2, the bounds (4.2) reduces to (4.21) provided

(m+n)[(B+1)(m+n+1)−(A+1)(n+1)
]

−m[(B+1)(m+n)−(A+1)(n+1)
]|z| ≥ 0.

(4.22)

On simplification, the above inequality becomes

m
(
1−|z|)[(m−1)(B+1)+(n+1)(B−A)]

+(n+1)
[
m(B+1)+(B−A)n]≥ 0

(4.23)

which is true for all admissible values of m,n,A,B, and |z|. Hence, the result follows.

Remark 4.1. The bounds for the functions in the classes Kn[A,B] and Vn[A,B]
can be similarly deduced from Theorem 4.1 by choosing φ(z) and ψ(z) suitably as
indicated in Section 1.

Theorem 4.2. Let f ∈ En[φ,ψ;A,B] and σm = (B + 1)(m+ 1)λm − (A+ 1)(n+
1)µm, m= 2,3, . . . . If n,m,σm,σm+1, and |z| satisfy the condition

(m+n)σm+1−(m+1)σm|z| ≥ 0, (4.24)

then

max
{

0,1− 2(B−A)
σ2

|z|
}
≤ ∣∣f ′(z)∣∣≤ 1+ (B−A)

σ2
|z|. (4.25)

The bounds are sharp for the function f(z)= z−(2(B−A)/σ2)z2.
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Proof. By means of Theorem 3.2, we note that

∣∣f ′(z)∣∣≥ 1−max
m

m!(n+1)!(B−A)
(m+n−1)!σm

|z|m−1,

∣∣f ′(z)∣∣≤ 1+max
m

m!(n+1)!(B−A)
(m+n−1)!σm

|z|m−1

(4.26)

for z ∈U . Thus, it suffices to show that

J∗
(
A,B,n,m,σm,|z|)= m!(n+1)!(B−A)

(m+n−1)!σm
|z|m−1 (4.27)

is a decreasing function of m(m≥ 2). But we can see that, for |z|≠ 0,

J∗
(
A,B,n,m,σm,|z|)≥ J∗

(
A,B,n,m+1,σm+1,|z|

)
(4.28)

if and only if

(m+n)σm+1−(m+1)σm|z| ≥ 0 (4.29)

which is (4.24). Hence,

max
m

J∗
(
A,B,n,m,σm,|z|) (4.30)

is attained at m= 2 and the result follows.

Remark 4.2. For suitable choices of φ(z),ψ(z), A, B, and n as stated in Section 1,
the above theorem leads to the corresponding bounds for f ′, where f is in Sn[A,B],
Kn[A,B], Pγ[α,β], Rγ[α,β], Vn[A,B], etc. The different cases can be deduced from
Theorem 4.2 as we did in the case of Theorem 4.1 and, hence, we omit the details.

Corollary 4.4. Let f(z) = z−∑∞
m=2amzm be in the class En[φ,ψ;A,B]. Then,

f(z) is included in a disc with center at the origin and radius r1 given by r1 = (σ2+
B−A)/σ2 and f ′(z) is included in a disc with center at the origin and radius r2 given
by r2 = [σ2+2(B−A)]/σ2.

5. Radius of starlikeness and convexity. Padmanabhan and Manjini [8] have shown
that the functions in En[φ,ψ;A,B] are starlike in U if φ(z) = ψ(z) = z/(1−z) and
convex in U if φ(z)=ψ(z)= z/(1−z)2. Now, we determine the largest disc in which
functions in En[φ,ψ;A,B] are starlike and convex of order δ(0 ≤ δ < 1) in U for all
admissible choices of φ(z),ψ(z),A,B, and n.

Theorem 5.1. If f ∈ En[φ,ψ;A,B], then f is starlike of order δ,0≤ δ < 1 for |z|<
r1, where

r1 = inf
m

{
(m+n−1)!(1−δ)σm

(m−1)!(n+1)!(m−δ)(B−A)
}1\m−1

, (5.1)

m= 2,3, . . . , and n∈N0.
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Proof. Let f ∈ En[φ,ψ;A,B]. It is sufficient to show that |zf ′(z)/f(z)−1| ≤ 1−δ
for |z|< r1, where r1 is as specified in the statement of the theorem. We have

∣∣∣∣zf ′(z)f(z)
−1
∣∣∣∣≤

∑∞
m=2(m−1)am|z|m−1

1−∑∞
m=2am|z|m−1

. (5.2)

Thus, |zf ′(z)/(f (z) − 1)| ≤ 1 − δ if
∑∞

m=2((m − δ)/(1 − δ))am ≤ 1. By virtue of
Theorem 2.2, we only need to find the values of |z| for which the inequality

m−δ
1−δ |z|m−1 ≤ (m+n−1)!σm

(m−1)!(n+1)!(B−A) (5.3)

is valid for all m= 2,3, . . . , which is true when |z|< r1.

Theorem 5.2. If f ∈ En[φ,ψ;A,B], then f is convex of order δ,0≤ δ < 1 for |z|<
r2, where

r2 = inf
m

{
(m+n−1)!(1−δ)σm

m!(n+1)!(m−δ)(B−A)
}1\m−1

, m= 2,3, . . . , and n∈N0. (5.4)

Proof. Since f(z) is convex of order δ if and only if zf ′(z) is starlike of order δ,
the result follows by replacing m with mam in Theorem 5.1.

6. Quasi-Hadamard product. The quasi-Hadamard product of two or more func-
tions has recently been defined and used by several researchers (see [5, 6] etc.). Ac-
cordingly the quasi-Hadamard product of f(z)= z−∑∞

m=2amzm, am ≥ 0, and g(z)=
z−∑∞

m=2bmzm, bm ≥ 0, is given by (f∗g)1(z)= z−∑∞
m=2ambmzm. Choosingφ(z)=

ψ(z) = z/(1−z) and φ(z) =ψ(z) = z/(1−z)2, respectively, in Theorem 2.2, we get
the following necessary and sufficient conditions for the functions in Sn[A,B] and
Kn[A,B], obtained in [8].

Let f ∈ T . Then f ∈ Sn[A,B] if and only if

∞∑
m=2

(m+n−1)!cm
(m−1)!(n+1)!

am ≤ B−A, (6.1)

and f ∈Kn[A,B] if and only if

∞∑
m=2

(m+n−1)!mcm
(m−1)!(n+1)!

am ≤ B−A, (6.2)

where cm = (B+1)(m+1)−(A+1)(n+1), n∈N0, and −1≤A< B ≤ 1. In this section,
we introduce the following new class and establish a theorem concerning the quasi-
Hadamard product for functions in f ∈ Sn[A,B] and f ∈ Kn[A,B]. The theorem and
its applications extend the corresponding results obtained by Kumar [5] when a1,i = 1,
b1,j = 1, i= 1,2, . . . ,p, j = 1,2, . . . ,q.

Definition 6.1. A function f(z) = z−∑∞
m=2amzm, am ≥ 0, which is analytic in

U , belongs to the class Skn[A,B] if and only if

∞∑
m=2

(m+n−1)!mkcm
(m−1)!(n+1)!

am ≤ B−A, (6.3)
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where cm = (B+1)(m+n)−(A+1)(n+1),−1≤A< B ≤ 1, n∈N0 and k is any fixed
nonnegative real number.

It is evident that S0
n[A,B] = Sn[A,B] and S1

n[A,B] = Kn[A,B]. Further, Skn[A,B] ⊂
Shn[A,B] if k > h≥ 0, the containment being proper. Whence, for any positive integer
k, we have the following inclusion relation:

Skn[A,B]⊂ Sk−1
n [A,B]⊂ ··· ⊂ S2

n[A,B]⊂Kn[A,B]⊂ Sn[A,B]. (6.4)

We also note that, for every nonnegative real number k, the class Skn[A,B] is nonempty
as the functions of the form

f(z)= z−
∞∑

m=2

(m−1)!(n+1)!(B−A)
(m+n−1)!mkcm

ξmzm, (6.5)

where ξm ≥ 0,
∑∞

m=2ξm ≤ 1, and n∈N0, satisfy the required inequality.

Theorem 6.1. Let the functions fi(z) = z−∑∞
m=2am,i zm, am,i ≥ 0, belong to the

class Kn[A,B] for every i = 1,2, . . . ,p and let the functions gj(z) = z−∑∞
m=2bm,j zm,

bm,j ≥ 0, belong to the class Sn[A,B] for every j = 1,2, . . . ,q. Then the quasi-Hadamard

product (f1∗f2∗···∗fp∗g1∗g2∗···∗gq)1(z) belongs to the class S2p+q−1
n [A,B].

Proof. Since fi ∈Kn[A,B], we have
∞∑

m=2

(m+n−1)!mcm
(m−1)!(n+1)!

am,i ≤ B−A (6.6)

or

am,i ≤ (m−1)!(n+1)!(B−A)
(m+n−1)!mcm

(6.7)

for every i= 1,2, . . . ,p. The right-hand expression of the last inequality is not greater
than m−2 for all A,B(−1≤A< B ≤ 1), and n∈N0. Hence,

am,i ≤m−2 for every i= 1,2, . . . ,p. (6.8)

Similarly, for gj ∈ Sn[A,B], we have
∞∑

m=2

(m+n−1) !cm
(m−1)!(n+1)!

bm,j ≤ B−A (6.9)

and, hence,

bm,j ≤m−1 for every j = 1,2, . . . ,q. (6.10)

Using (6.8) for i= 1,2, . . . ,p; (6.10) for j = 1,2, . . . ,q−1; and (6.9) for j = q, we get
∞∑

m=2

[
(m+n−1)!m2p+q−1cm

(m−1)!(n+1)!

p∏
i=1

am,i

q∏
j=1

bm,j

]

≤
∞∑

m=2

[
(m+n−1)!m2p+q−1cm

(m−1)!(n+1)!
(
m−2pm−(q−1))bm,q

]

=
∞∑

m=2

[
(m+n−1)!cm
(m−1)!(n+1)!

bm,q

]
≤ B−A.

(6.11)

Hence, (f1∗f2∗···∗fp∗g1∗g2∗···∗gq)1(z)∈ S2p+q−1
n [A,B].
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We note that the required estimate can also be obtained by using (6.8) for i= 1,2, . . . ,
p−1; (6.10) for j = 1,2, . . . ,q; and (6.6) for i= p.

Taking into account the quasi-Hadamard product of the functions f1(z),f2(z), . . . ,
fp(z) only in the proof of Theorem 6.1, and using (6.8) for i= 1,2, . . . ,p−1; and (6.6)
for i= p, we are led to the following corollary:

Corollary 6.1. Let the functions fi(z) = z−∑∞
m=2am,izm,am,i ≥ 0, belong to the

class Kn[A,B] for every i = 1,2, . . . ,p. Then the quasi-Hadamard product (f1 ∗ f2 ∗
···∗fp)1(z) belongs to the class S2p−1

n [A,B].

Next, taking the quasi-Hadamard product of functions g1(z), g2(z), . . . ,gq(z) only
in the proof of Theorem 6.1, and using (6.10) for j = 1,2, . . . ,q−1; and (6.9) for j = q,
we get the following corollary:

Corollary 6.2. Let the functions gj(z)= z−∑∞
m=2bm,jzm,bm,j ≥ 0, belong to the

class Sn[A,B] for every j = 1,2, . . . ,q. Then the quasi-Hadamard product (g1 ∗g2 ∗
···∗gq)1(z) belongs to the class Sq−1

n [A,B].
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