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Abstract. A necessary and sufficient condition to extend a continuous linear real func-
tionals which is positive with respect to a semi-group defined on a subspace of a linear
space is discussed in this paper. The case of a closed subspace of a Banach space is also
discussed.
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1. Introduction. Let E be a real linear space with a linear semi-group K (we will call
the set K ⊂ E a linear semi-group if it possesses the following properties: K+K ⊂ K,
and α·K ⊂ K for all α≥ 0) with K ⊂ E (the word, linear will be omitted) and let L⊂ E
be a subspace of E. Also, let f0 be a real linear functional on L. A real linear functional
f on E is called an extension of f0 if f(x)= f0(x) for every x ∈ L. A linear functional
f will be called positive (with respect to K) if f(x)≥ 0 for every x ∈K.
In the theory of spaces with an associated semi-group, the existence of the extension

of positive linear functional plays an important role. Later on, several mathematicians
studied a necessary condition to extend a linear continuous positive functional, for
example, M. G. Krein theorem [4] states that “if K ≠ E is a semi-group in a Banach
space E with interior point and the subspace L⊂ E contains at least one interior point
of K, then each linear continuous positive functional on L (i.e., f0 : L → R such that
f0(x) ≥ 0 for every x ∈ K∩L = KL) can be extended to a linear continuous positive
functional f defined on E (i.e., f : E → R such that f0(x)= f(x) for every x ∈ L, and
f(x) ≥ 0 for every x ∈ K).” Other important theorems on the existence of positive
extension of linear functionals are given in [1, 2, 3].

2. Main results. In the present work, we introduce a new condition for the existence
of the extension of positive linear functionals which depend upon the definition of
Banach functional [5]. Two cases will be considered separately.

Case (A). E is a real linear space with a semi-group K.
The functional ω : E→R is called a Banach functional if
(1) ω(x+y)≤ω(x)+ω(y) for every x,y ∈ E,
(2) ω(λ·x)= λ·ω(x) for every x ∈ E, for every λ≥ 0.

We say that the Banach functional ω is monotonic (with respect to K), if ω(x+y)≥
ω(x) for every x ∈ E and for every y ∈K.
The following theorem is close to [1, Thm. 2.3].
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Theorem 2.1. Let L ⊂ E be a subspace of a linear space E, and f0: L → R be a
linear functional such that f0(x)≥ 0 for every x ∈KL. Then a necessary and sufficient
condition for the existence of a linear functional f : E →R, such that f0(x)= f(x) for
every x ∈ L and f(x) ≥ 0 for every x ∈ K, is the existence of a monotonic Banach
functional ω satisfying the inequality

f0(x)≤ω(x) for every x ∈ L. (2.1)

Proof. Let the functional f be an extension of f0. We define the functional ω by
ω(x) = inf{|f(x+y)| : y ∈ K}, where x ∈ E. Obviously, ω is a monotonic Banach
functional which satisfies inequality (2.1). (Another proof, f is already a monotonic
Banach functional and hence we take ω= f .)
Conversely, consider the existence of a monotonic Banach functional ω satisfying

inequality (2.1). Then by the Hahn-Banach theorem there exists a linear functional f
on E such that f0(x) = f(x) for every x ∈ L and f(x) ≤ ω(x) for every x ∈ E. It
remains to prove that f is positive. Let x ∈K, then from the fact thatω is monotonic,
we get ω(−x) ≤ 0 and therefore f(−x) ≤ω(−x) ≤ 0, which implies that f(x) ≥ 0.
Hence f is a positive extended functional of f0. This completes the proof of the
theorem.

In the following theorem, the condition that the Banach functional is monotonic is
dropped.

Theorem 2.2. Let L⊂ E be a subspace of a linear space E,� be a Banach functional
(not necessarily monotonic), and f0 : L→R be a linear functional such that

f0(x)≤�(x+y) for every x ∈ L, for every y ∈K. (2.2)

Then f0 has an extension functional f on E such that f(x)≥ 0 for every x ∈K.
Proof. Let ω(x) = inf{�(x+y) : y ∈ K} for every x ∈ E. We start by showing

that
(i) ω(x) >−∞ for every x ∈ E,
(ii) f0(x)≤ω(x) for every x ∈ L,
(iii) ω is a monotonic Banach functional.
Condition (i) is a consequence of inequality (2.2) for, if x = 0, then �(y) ≥ 0

for every y ∈ K, but � is a Banach functional, then 0 ≤�(y) =�(x+y+ (−x)) ≤
�(x+y)+�(−x), which implies that �(x+y) ≥ −�(−x) for every y ∈ K and for
every x ∈ E. Therefore, ω(x) ≥ −�(−x) > −∞ for every x ∈ E, this proves condi-
tion (i). Since f0(x) ≤�(x+y) for every x ∈ L, every y ∈ K, then f0(x) ≤ω(x) for
every x ∈ E. This proves condition (ii).
Clearly ω is a Banach functional and it remains to show that ω is a monotonic

functional (i.e., ω(x)≤ω(x+y) for every y ∈ K and every x ∈ E). Since ω(x+y)=
inf{�(x+y +y1) : y1 ∈ K} = inf{�(x+z) : z = y +y1 ∈ K,y1 ∈ K} ≥ inf{�(x+
u) : u ∈ K} = ω(x) for every y ∈ K and every x ∈ E, and hence condition (iii) is
satisfied. Moreover, by using Theorem 2.1, there exists an extension functional f of
the functional f0 such that f(x)≥ 0 for every x ∈K. This completes the proof of the
theorem.
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Case (B). E is a Banach space with closed semi-group K.
We introduce the following definition.

Definition. We define the following functional |x|K = inf{‖x+y‖ : y ∈ K} for
each x ∈ E. Obviously, |·|K is a monotonic functional with respect to the semi-group
K and | · |K is a Banach functional, moreover, |x|K ≤ ‖x‖ for every x ∈ E (hence the
functional | · |K is a continuous functional on E). Also, from the closeness of a semi-
group K, we have |x|K = 0 if and only if −x ∈K.

Example 1. Let E= �2 = {x = (ξi) :
∑
i |ξi|2 <∞}, K={(ξi)∈ �2 : ξi ≥ 0, i= 1,2, . . .}.

Obviously, for every x = (ξi) ∈ �2, x = x+ − x−, where x+ = 1/2(|ξi| + ξi),
x− = 1/2(|ξi|−ξi), then x+,x− ∈K and |x|K = ‖x+‖.
The following theorem is analogous to Theorem 2.1.

Theorem 2.3. Let L be a closed subspace of a Banach space E with a closed semi-
group K, and let f0 : L → R be a linear continuous functional such that f0(x) ≥ 0
for every x ∈ KL. Then a necessary and sufficient condition that there exists a linear
continuous functional f : E → R such that f0(x) = f(x) for every x ∈ L and f(x) ≥ 0
for every x ∈ K is that there exist numbers α > 0, β > 0 and a monotonic Banach
functional ω that satisfies the inequalities

f0(x)≤α·ω(x) for every x ∈ L, (2.3)

ω(x)≤ β·‖x‖ for every x ∈ L. (2.4)

Proof. For the proof of the theorem, we need the following lemma.

Lemma 2.1. The linear continuous functional f is positive with respect to a semi-
group K if and only if there exists a number C > 0 such that

f(x)≤ C ·|x|K for every x ∈ E. (2.5)

Proof. If f is positive, then f(y) ≥ 0 for every y ∈ K. Let x ∈ E, then x ≤ x+y
for every y ∈ K. This implies that f(x +y) = f(x)+ f(y) ≥ f(x) and therefore
f(x) ≤ f(x+y) ≤ |f(x+y)| ≤ ‖f‖‖x+y‖. By taking the infimum of both sides of
the previous inequality, we get C = ‖f‖, f(x)≤ C ·|x|K . Conversely, let f be a linear
continuous functional and there exists a number C > 0 such that f(x) ≤ C · |x|K
for every x ∈ E. In particular if y ∈ K, then −y ∈ −K and we obtain that −f(y) =
f(−y)≤ C|−y|K = 0. Hence, f(y)≥ 0 for every y ∈K.
Now we return to the proof of Theorem 2.3.
Let the linear continuous functional f0 on L has a linear continuous positive ex-

tension functional f on E. Then by Lemma 2.1, there exists a number C > 0 such
that f(x) ≤ C · |x|K for every x ∈ E. Put ω(x) = |x|K , α = C and β = 1. Hence
f0(x) ≤ C ·ω(x) and ω(x) ≤ ‖x‖ for every x ∈ L. Conversely, let f0 be a contin-
uous linear functional on L which satisfies inequalities (2.3) and (2.4). Hence by the
Hahn-Banach theorem there exists an extension functional f of f0 on E such that
f(x)≤α·ω(x) for every x ∈ E. Hence from the fact that ω is monotonic, we obtain
that f(x)≥ 0 for every x ∈K, and from the following inequality:

f(x)≤α·ω(x)≤α·β·‖x‖, (2.6)
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we obtain that f is a linear continuous functional on E. This completes the proof of
the theorem.

Corollary 2.1. The linear continuous positive functional f0 on a closed subspace
L of a Banach space E has a linear continuous positive extension functional f on E if
and only if there exists a number C > 0 such that

f0(x)≤ C ·|x|K for every x ∈ L. (2.7)

Proof. This follows directly from Theorem 2.3.

In the following section, we discuss the relationship between the two functionals
|x|K and |x|KL , where |x|KL = inf{‖x+y‖ :y ∈KL} for each x ∈ L.
It is clear that |x|K ≤ |x|KL for every x ∈ L. From Lemma 2.1, if f0 is a linear contin-

uous functional on a closed subspace L in a Banach space E such that f0(x) ≥ 0 for
every x ∈ KL, then there exists a number C > 0 such that f0(x) ≤ C · |x|KL for every
x ∈ L.

Theorem 2.4. Given C > 0 such that |x|KL ≤ C · |x|K for every x ∈ L. Then every
continuous linear positive (with respect to a closed semi-group KL) functional f0 on a
closed subspace L has a linear continuous positive (with respect to a closed semi-group
K) extension functional f on E.

Proof. The proof follows directly from Lemma 2.1 and Corollary 2.1.

We have to note that M. G. Krein theorem can be obtained directly from Theorem 2.4
and the following lemma.

Lemma 2.2. Let K ≠ E be a semi-group in a Banach space E with interior point (i.e.,
K is a solid semi-group), and let the closed subspace L⊂ E contains at least one interior
point of K. Then there exists a number C > 0 such that |x|KL ≤ C ·|x|K for every x ∈ L.

Proof. Let u0 ∈ L be an interior point of K, then there exists δ0 > 0 such that
T(u0,δ0) ⊂ K, where T(u0,δ0) = {u : ‖u−u0‖ ≤ δ0}. It is well known that uα =
α·u0+(1−α). y,0<α< 1 are the interior points of K with radius α·δ0 (i.e., T(uα,
α ·δ0) ⊂ K) for every y ∈ K. Now, we suppose that x ∈ L and ‖x‖ = 1 then Zα =
(α ·u0 − (1−α) ·x) ∈ L and ‖Zα −uα‖ = (1−α)‖x +y‖. Therefore, if we choose
α= ‖x+y‖·(δ0+‖x+y‖)−1, then Zα ∈K and

|x|KL ≤ ‖x+Zα‖ =α·|u0+x‖
≤ (‖u0‖+1

)·(δ0+‖x+y‖
)−1‖x+y‖

≤ (‖u0‖+1
)
δ−10 ‖x+y‖

= C ·‖x+y‖,

(2.8)

where C = (δ0)−1(‖uo‖+1). By taking the infimum of both sides of the last inequality
at y ∈K, we get

|x|KL ≤ C ·|x|K for every x ∈ L. (2.9)
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The following example shows that, if the semi-group K does not contain an interior
point, then M. G. Krein theorem cannot be applied but our work can be applied.

Example 2. Back to Example 1, it is known that K is not solid semi-group in E = �2.
If x1 = (1,1/2, . . . ,1/n,. . .), x2 = (1,1/22, . . . ,1/n2, . . .), and L = {αx1+βx2 : α,β ∈ R}
is a subspace of E, then KL = K∩L = {λx1+µx2 : λ ≥ 0,λ+µ ≥ 0}. Let f0 : L→ R be
defined by f0(x) = f0(αx1+βx2) = αC1+βC2, where C1 and C2 are real numbers.
Then if C1−C2 > 0, C2 > 0, the functional f0 satisfies inequality (2.7). Therefore, from
Corollary 2.1, the linear continuous positive functional f0 on L has a linear continuous
positive extension functional f on E. We remark here that if C2 = 0 and C1 > 0, then
clearly, the positive functional f0 has no positive functional extension on E.
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