RECAPTURING SEMIGROUP COMPACTIFICATIONS OF A GROUP FROM THOSE OF ITS CLOSED NORMAL SUBGROUPS

M. R. MIRI and M. A. POURABDOLLAH

(Received 8 January 1998 and in revised form 20 June 1998)

ABSTRACT. We know that if *S* is a subsemigroup of a semitopological semigroup *T*, and \mathcal{F} stands for one of the spaces $\mathcal{AP}, \mathcal{WAP}, \mathcal{SAP}, \mathfrak{D}$ or \mathcal{LC} , and $(\epsilon, T^{\mathcal{F}})$ denotes the canonical \mathcal{F} -compactification of *T*, where *T* has the property that $\mathcal{F}(S) = \mathcal{F}(T)_{|_S}$, then $(\epsilon_{|_S}, \overline{\epsilon(S)})$ is an \mathcal{F} -compactification of *S*. In this paper, we try to show the converse of this problem when *T* is a locally compact group and *S* is a closed normal subgroup of *T*. In this way we construct various semigroup compactifications of *T* from the same type compactifications of *S*.

Keywords and phrases. Semigroup (\mathcal{P} -) compactification, conjugation invariance.

2000 Mathematics Subject Classification. 43A60.

1. Introduction. For notation and terminology we follow Berglund et al. [2], as much as possible. Thus a topological semigroup is a semigroup *S* that is a Hausdorff topological space, the multiplication $(s,t) \rightarrow st : S \times S \rightarrow S$ being continuous. *S* is called a semitopological semigroup if the multiplication is separately continuous, i.e., the maps $\lambda_s : t \rightarrow st$ and $\rho_s : t \rightarrow ts$ from *S* into *S* are continuous for each $s \in S$. For *S* to be right topological only, the maps ρ_s are required to be continuous. Let *G* denote a locally compact group, and *N* is a closed normal subgroup of *G*. A semigroup compactification of *G* is a pair (φ , *X*), where *X* is a compact right topological semigroup with identity 1, and $\varphi : G \rightarrow X$ is a continuous homomorphism with $\overline{\varphi(G)} = X$, and $\varphi(G) \subset \Lambda(X) = \{x \in X \mid \lambda_x : X \rightarrow X \text{ is continuous}\}; \Lambda(X)$ is called the topological center of *X*. When there is no risk of confusion we often refer to (φ , *X*), or even to *X*, as a compactification of *G*.

A homomorphism from a compactification (ψ, X) of *S* to a compactification (φ, Y) of *S* is a continuous function $\theta : X \to Y$ such that $\theta \circ \psi = \varphi$. Then, *Y* is called a factor of *X*, and *X* is an extension of *Y*. A compactification with a given property *P* (such as that of being a semitopological semigroup or a topological group) is called a *P*-compactification. A universal *P*-compactification of *S* is a *P*-compactification which is an extension of every *P*-compactification of *S* (see [1, 2, 3]).

The *C*^{*}-algebra of all bounded continuous complex-valued functions on *G* is denoted by $\mathscr{C}(G)$ with left and right translation operators, L_s and R_s , defined for all $s \in G$ by $L_s f = f \circ \lambda_s$ and $R_s f = f \circ \rho_s$. If \mathscr{A} is a *C*^{*}-subalgebra of $\mathscr{C}(G)$ containing the constant functions, we denote by $G^{\mathscr{A}}$ the spectrum of \mathscr{A} furnished with Gelfand topology (i.e., the weak*-topology induced from \mathscr{A}^*); the natural map $\epsilon : G \to G^{\mathscr{A}}$ is defined by $\epsilon(s) f = f(s)$. When \mathscr{A} is left translation invariant (i.e., $L_s f \in \mathscr{A}$ for all $s \in G$ and $f \in \mathscr{A}$) we can define an action of *G* on $G^{\mathscr{A}}$ by $(s, v) \to \epsilon(s)v$, where $(\epsilon(s)v)(f) = v(L_s f)$. Right translation invariance and $v\epsilon(s)$ are analogously defined (see [5, 7]).

A left translation invariant C^* -subalgebra of $\mathscr{C}(G)$ containing the constant functions is called left *m*-introverted if the function $s \to (\nu f)(s) = \nu(L_s f)$ is in \mathscr{A} for all $f \in \mathscr{A}$ and $\nu \in G^{\mathscr{A}}$; in this situation the product of $\mu, \nu \in G^{\mathscr{A}}$ can be defined by $(\mu\nu)(f) = \mu(\nu f)$. This makes $(\epsilon, G^{\mathscr{A}})$ a semigroup compactification of *G*. The spaces of almost periodic, weakly almost periodic, left continuous and distal functions, which are denoted by $\mathscr{AP}, \mathscr{WAP}, \mathscr{LC}$, and \mathfrak{D} , respectively, are left *m*-introverted. We refer the reader to [2, 5] for the one-to-one correspondence between compactifications of *G* and left *m*-introverted C^* -subalgebras of $\mathscr{C}(G)$, and also for a discussion of properties *P* of compactifications and associated universal mapping properties.

2. Main results. Let *G* be a locally compact group with a closed normal subgroup *N*, and let (φ, X) be a compactification of *N*. Let ~ be the equivalence relation on $G \times X$ with equivalence classes $\{(sr^{-1}, \varphi(r)x) | r \in N\}$. Thus

$$(s,x) \sim (t,y)$$
 if and only if $t^{-1}s \in N$ and $\varphi(t^{-1}s)x = y$. (2.1)

 $\pi: G \times X \to (G \times X) / \sim$ will denote the quotient map. Clearly π is one-to-one on $\{e\} \times X$, so we can identify $X \cong \{e\} \times X$ with $\pi(\{e\} \times X)$. It is important that $(G \times X) / \sim$ is locally compact and Hausdorff. In this connection we have the following lemmas, which are stated in [6].

LEMMA 2.1. (i) The graph of ~ is closed. (ii) $\pi: (G \times X) \to (G \times X) / \sim$ is an open mapping. (iii) Let *K* be a compact subset of *G* and let L = KN, then $\pi(K \times X) = \pi(L \times X)$.

This lemma has the following easy consequences.

LEMMA 2.2. The quotient space $(G \times X) / \sim$ is locally compact and Hausdorff.

LEMMA 2.3. If G = KN for some compact subset K of G, then $(G \times X) / \sim$ is compact.

Let $\mu : G \to (G \times X)$ be defined by $\mu(s) = (s, 1)$, where 1 is the identity of *X*. Then, $\pi \circ \mu : G \to (G \times X) / \sim$ is continuous as a composition of two continuous functions, and $\pi \circ \mu(G) = \pi(G \times \varphi(N))$, since for each $(s, \varphi(r)) \in G \times \varphi(N)$, $(s, \varphi(r)) \sim (sr, 1)$, and $\pi \circ \mu(sr) = \pi(sr, 1) = \pi(s, \varphi(s))$. Furthermore, if φ is a homeomorphism of *N* into *X*, then $\pi \circ \mu$ is also a homeomorphism.

We now define $\sigma_s(r) = s^{-1}rs$ for $s \in G$ and $r \in N$, it is obvious that $\sigma_s : N \to N$ is a surjective homomorphism for each $s \in G$.

DEFINITION 2.4. A \mathcal{P} -compactification (φ , X) of N is said to be a conjugation invariant \mathcal{P} -compactification of N if ($\varphi \circ \sigma_s, X$) is a \mathcal{P} -compactification of N for each $s \in G$. When we write \mathcal{P} -compactification instead of P-compactification, this means that we want to emphasize its conjugation invariance, see Corollary 2.7.

REMARK. The reader may have noticed that, the definition of \mathcal{P} -conjugation invariant compactification is different from the compatibility of a compactification in [6], because if \mathcal{P} is a property of compactifications that is not invariant under homomorphism and (ψ, X) is a \mathcal{P} -compactification of N compatible with G, then $(\psi \circ \sigma_s, X)$ is a

38

39

compactification of *N* which may not be a \mathcal{P} -compactification of *N*, thus (ψ, X) can fail to be a \mathcal{P} -conjugation invariant compactification of *N*. On the other hand, if (ψ, X) is a \mathcal{P} -conjugation invariant compactification of *N*, i.e., $(\psi \circ \sigma_s, X)$ is a \mathcal{P} -compactification of *N* for each $s \in G$, it is not always true that σ_s has an extension from *X* to *X*.

LEMMA 2.5. Let *G* be a locally compact group, *N* a closed normal subgroup, and (φ, X) a conjugation invariant universal \mathcal{P} -compactifications of *N*, then each σ_s can be extended continuously to a mapping from *X* to *X*.

PROOF. By conjugation invariance of (φ, X) , $(\varphi \circ \sigma_s, X)$ is a \mathcal{P} -compactification of N, and by universality of (φ, X) there exists a continuous homomorphism $\nu : X \to X$ such that $\varphi \circ \sigma_s = \nu \circ \varphi$ for each $s \in N$. This ν is the continuous function extending σ_s .

It is obvious that if (φ, X) is a conjugation invariant universal \mathcal{P} -compactification of N, then each σ_s determines a continuous transformation of X, for which we use the same notation σ_s .

COROLLARY 2.6. Let N be contained in the center of G, then each compactification (φ, X) of N is conjugation invariant.

COROLLARY 2.7. Let $(\epsilon, N^{\mathcal{P}})$ denote a universal \mathcal{P} -compactification of N and let \mathcal{P} be a purely algebraic property, then $(\epsilon, N^{\mathcal{P}})$ is a conjugation invariant \mathcal{P} -compactification of N.

Notice our deviation from the usual notation.

COROLLARY 2.8. Let (φ, X) be an \mathcal{F} -compactification of N, where \mathcal{F} stands for either of the spaces \mathcal{AP} and \mathcal{WAP} , then (φ, X) is a conjugation invariant universal \mathcal{F} -compactification of N.

LEMMA 2.9. Let (φ, X) be a conjugation invariant \mathcal{P} -compactification of N, then for each $s \in G$, σ_s is a continuous automorphism of X.

PROOF. σ_s is a homeomorphism of *X* onto *X* (since $\sigma_s(N) = N$ and $\sigma_s \sigma_{s^{-1}} = I$, the identity mapping). Now, we show that σ_s is a homeomorphism. Obviously,

$$\sigma_s(xy) = \sigma_s(x)\sigma_s(y) \quad \text{for each } x, y \in \varphi(N). \tag{2.2}$$

Since *X* is a right topological semigroup with $\varphi(N) \subset \Lambda(X)$, we conclude that (2.2) holds for each $x \in \varphi(N)$, $y \in X$. Then it follows that (2.2) holds for all $x, y \in X$, as required.

If *N* is a closed subgroup of *G*, and *X* is a conjugation invariant \mathcal{P} -compactification of *N*, then we can define a semidirect product structure on $G \times X$ by $(s,x)(t,y) = (st, \sigma_t(x)y)$, where σ_t is the conjugation map.

LEMMA 2.10. Let *G* be a locally compact group with a closed normal subgroup *N*, and let (φ, X) be a conjugation invariant \mathcal{P} -compactification of *N*, then $G \times X$ is a right topological semigroup. Furthermore, the map

$$((s,r),(t,y)) \longrightarrow (st,\varphi(\sigma_t(r))y) : (G \times N) \times (G \times X) \longrightarrow G \times X$$
(2.3)

is continuous, and the equivalence relation \sim *is a congruence on* $G \times X$ *.*

PROOF. The continuity is an easy conclusion of Ellis theorem. Now, we show that \sim is a congruence. Suppose $(s,x) \sim (t,y)$ and $(u,z) \in G \times X$, then $t^{-1}s \in N$ and $\varphi(t^{-1}s)x = y$, so $(s,x)(u,z) = (su, \sigma_u(x)z)$ and $(t,y)(u,z) = (tu, \sigma_u(y)z)$.

On the other hand, $(su, \sigma_u(x)z) \sim (tu, \sigma_u(y)z)$ since $(tu)^{-1}su = u^{-1}t^{-1}su \in N$ and

$$\varphi((tu)^{-1}su)\sigma_u(x)z = \sigma_u(y)z, \qquad (2.4)$$

thus

$$(s,x)(u,z) \sim (t,y)(u,z).$$
 (2.5)

Similarly

$$(u,z)(s,x) \sim (u,z)(t,y).$$
 (2.6)

The following theorem is an easy consequence of the previous corollaries and lemmas.

THEOREM 2.11. Let *G* be a locally compact group with a closed normal subgroup *N*, and let (φ, X) be a conjugation invariant compactification of *N*. Then $(G \times X) / \sim$ is a locally compact right topological semigroup, and a compactification of *G*, provided that *G* = *KN* for some compact subset *K* of *G*.

THEOREM 2.12. The compactification $(\pi \circ \mu, (G \times X) / \sim)$ of *G* described in the previous theorem has the following universal property; let (φ, Y) be a semigroup compactification of *G* such that $\varphi|_N$ extends to a continuous homomorphism $\varphi : X \to Y$ in such a way that for each $s \in G$ and $x \in X$,

$$\phi(\sigma_s(x)) = \phi(s^{-1})\phi(x)\phi(s), \qquad (2.7)$$

then there exists a (unique) continuous homomorphism $\theta : (G \times X) / \sim \rightarrow Y$ such that $\theta \circ \pi \circ \mu = \varphi$.

PROOF. We define $\theta_0 : G \times X \to Y$ by $\theta_0(s, x) = \varphi(s)\phi(x)$, then θ_0 is a continuous homomorphism which is constant on ~-classes of $G \times X$. Now we take $\theta = \theta_0 \circ \pi$. \Box

THEOREM 2.13. Let N be a closed normal subgroup of G with G = KN for some compact subset K of G. Suppose that \mathfrak{P} is a property of compactifications such that $(\varphi|_N, \overline{\varphi(N)})$ is a \mathfrak{P} -compactification of N whenever $(\varphi, \overline{\varphi(G)})$ is a \mathfrak{P} -compactification of G. Suppose that $(\epsilon, N^{\mathfrak{P}})$ is a conjugation invariant universal \mathfrak{P} -compactification of N. If $(G \times N^{\mathfrak{P}}) / \sim$ has the property \mathfrak{P} , then $(G \times N^{\mathfrak{P}}) / \sim$ is the universal \mathfrak{P} -compactification of G.

PROOF. We show that $(G \times N^{\mathcal{P}})/\sim$ is the universal \mathcal{P} -compactification of G. Let (φ, X) be a \mathcal{P} -compactification of G such that $(\varphi|_N, \overline{\varphi(N)})$ is a \mathcal{P} -compactification of N, by the universal property of $N^{\mathcal{P}}$ there exists a continuous homomorphism $\phi : N^{\mathcal{P}} \to X$ such that $\phi \circ \epsilon = \varphi|_s$, and we have $\phi(\sigma_s(x)) = \varphi(s^{-1})\phi(x)\varphi(s)$ for all $s \in G$ and $x \in N^{\mathcal{P}}$. Notice that we use two different scripts of the same letter to emphasize

40

their connection. Indeed, for fixed $s \in G$, both sides represent homomorphisms of $N^{\mathscr{P}}$ into X, both sides are continuous in x, and coincide on the dense subspace N. Now the map $\varphi \times \varphi : (G \times N^{\mathscr{P}}) \to X$ defined by $(\varphi \times \varphi)(s, x) = \varphi(s)\varphi(x)$ is continuous and a homomorphism, since

$$(\varphi \times \phi)((s,x)(t,y)) = (\varphi \times \phi)(st,\sigma_t(x)y) = \varphi(st)\phi(\sigma_t(x)y)$$

= $\varphi(s)\varphi(t)\phi(\sigma_t(x))\phi(y) = \varphi(s)\phi(x)\varphi(t)\phi(y)$ (2.8)
= $\varphi \times \phi(s,x)\varphi \times \phi(t,y).$

Also $\varphi \times \phi$ is constant on ~-classes, thus the quotient of $\varphi \times \phi$ gives a continuous homomorphism from $(G \times N^{\mathcal{P}}) / \sim$ to *X*.

COROLLARY 2.14. Let N be a closed normal subgroup of G with G = KN for some compact subset K of G, then

(i) $(G \times N^{\mathcal{L}}) / \sim$ is the universal \mathcal{L} -compactification of *G*.

(ii) $(G \times N^{\mathfrak{D}}) / \sim$ is the universal \mathfrak{D} -compactification of G.

PROOF. (i) Since $(G \times N^{\mathcal{L}})/\sim$ is a compactification of *G*, by Theorem 2.13, $(G \times N^{\mathcal{L}})/\sim$ is the universal \mathcal{L} -compactification of *G*.

(ii) Since $N^{\mathfrak{D}}$ is a group, $(G \times N^{\mathfrak{D}}) / \sim$, the quotient by a congruence of a semidirect product of groups is also a group, thus by Theorem 2.13 $(G \times N^{\mathfrak{D}}) / \sim$ is the universal \mathfrak{D} -compactification of G.

In some situations, we want to be able to conclude that the right topological semigroup $(G \times X) / \sim$ of Theorem 2.13 is also left topological. The following lemma can be helpful in this connection.

LEMMA 2.15. Let *G* be a locally compact group with a closed normal subgroup *N* and let *X* be a universal conjugation invariant compactification of *N*. Suppose that G = KN for some compact subset *K* of *G* and $s \rightarrow \sigma_s(x) : G \times X \rightarrow X$ is continuous for all $x \in X$. Then $(G \times X) / \sim$ is semitopological.

PROOF. Since $(s, x) \to \sigma_s(x) : G \times X \to X$ is a group action, it is continuous by Ellis theorem, thus $G \times X$ is semitopological semigroup and also $(G \times X) / \sim = \pi(G \times X)$.

COROLLARY 2.16. Let *G* be a locally compact group with a closed normal subgroup *N*, *G* = *KN* for some compact subset *K* of *G* and suppose that $s \to \sigma_s(x) : G \to N^{W \mathfrak{AP}}$ is continuous for all $x \in N^{W \mathfrak{AP}}$, then $(G \times N^{W \mathfrak{AP}}) / \sim$ is the universal semitopological semigroup compactification of *G*.

PROOF. Since $N^{\mathcal{WAP}}$ is a semitopological semigroup, by Lemma 2.15, $(G \times N^{\mathcal{WAP}}) / \sim$ is semitopological semigroup. Thus by Theorem 2.13, $(G \times N^{\mathcal{WAP}}) / \sim$ is the universal semitopological semigroup compactification of *G*.

A similar argument yields the following corollary.

COROLLARY 2.17. Let *G* be a locally compact group with a closed normal subgroup *N*, *G* = *KN* for some compact subset *K* of *G* and suppose that $s \rightarrow \sigma_s(x) : G \rightarrow N^{\mathcal{AP}}$ is

continuous for all $x \in N^{\mathcal{AP}}$, then $(G \times N^{\mathcal{AP}}) / \sim$ is the universal topological semigroup compactification of *G*.

LEMMA 2.18. Let N be a closed normal subgroup of G with G = KN for some compact subset K of G. Let \mathcal{F} and \mathcal{G} be left m-introverted subalgebras of $\mathcal{L}\mathcal{C}(N)$ and $\mathcal{L}\mathcal{C}(G)$, respectively. Then $N^{\mathcal{F}}$ is a conjugation invariant \mathcal{F} -compactification of N if and only if $\mathcal{G}|_{N} = \mathcal{F}$ and $(G \times N^{\mathcal{F}})/\sim$ is the \mathcal{G} -compactification of G.

PROOF. Let $\mathcal{G}|_N = \mathcal{F}$, we define $\sigma_s(x)(f)$ for $s \in G$, $x \in N^{\mathcal{F}}$ and $f \in \mathcal{F}$ by $\sigma_s(x)(f) = x(g \circ \sigma_s|_N)$, where $g \in \mathcal{G}$, $g|_N = f$. Since every such extension g yields a $g \circ \sigma_s$ agreeing with $f \circ \sigma_s$ on N, $\sigma_s(x)$ is well defined. So $N^{\mathcal{F}}$ is a conjugation invariant \mathcal{F} - compactification of N.

Conversely, since the quotient map $\pi : G \times N^{\mathcal{F}} \to (G \times N^{\mathcal{F}}) / \sim$ is injective on the compact set $N^{\mathcal{F}} \cong \{e\} \times N^{\mathcal{F}}$, it gives a topological isomorphism of $N^{\mathcal{F}}$ into $G^{\mathcal{G}} \cong (G \times N^{\mathcal{F}}) / \sim$.

COROLLARY 2.19. Let G be a compact group with a closed normal subgroup N, then (i) $(G \times N^{W \otimes \mathcal{P}}) / \sim \cong G^{W \otimes \mathcal{P}}$.

(ii) $(G \times N^{\mathcal{AP}}) / \sim \cong G^{\mathcal{AP}}$.

COROLLARY 2.20. *Let N be a closed normal subgroup of a locally compact group G contained in the center of G, then*

$$\left(G \times N^{\mathcal{WAP}}\right) / \sim \cong G^{\mathcal{WAP}}.$$
(2.9)

The next example shows that the continuity of $s \rightarrow \sigma_s(x)$ in Corollary 2.14 and Lemma 2.15 is an essential condition.

EXAMPLE 2.21. Let $G = \mathbb{C} \times \mathbb{T}$ be the Euclidean group of the plane with $(z, w)(z_1, w_1) = (z + wz_1, ww_1)$ and $N = \mathbb{C} \times \{1\}$, then N is a closed normal subgroup of G and $\mathscr{AP}(G)|_N$ is a proper subset of $\mathscr{AP}(N)$ [4, 8], so by Lemma 2.15 $(G \times \mathbb{C}^{\mathscr{AP}})/\sim$ is not the universal \mathscr{AP} compactification of G. $\mathbb{C}^{\mathscr{AP}}$ is a conjugation invariant compactification of N, so the continuity of $s \to \sigma_s$ must fail to hold Lemma 2.15. From [4, 8], we can similarly conclude that $(G \times \mathbb{C}^{\mathscr{MP}})/\sim$ is not the universal \mathscr{WAP} -compactification of G and that the continuity of $s \to \sigma_s$, as required by Corollary 2.14, also fails to hold.

References

- J. F. Berglund, H. D. Junghenn, and P. Milnes, *Compact Right Topological Semigroups* and Generalizations of Almost Periodicity, Lecture Notes in Mathematics, vol. 663, Springer-Verlag, New York, Berlin, 1978. MR 80c:22003. Zbl 406.22005.
- [2] _____, Analysis on Semigroups: Function Spaces, Compactifications, Representations, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1989. MR 91b:43001. Zbl 727.22001.
- [3] R. B. Burckel, Weakly Almost Periodic Functions on Semigroups, Gordon and Breach Science Publishers, New York, London, Paris, 1970. MR 41#8562. Zbl 192.48602.
- [4] C. Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc. 206 (1975), 175-200. MR 52 14868. Zbl 303.43017.
- [5] K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 24#A1632. Zbl 104.05501.

- [6] A. T. Lau, P. Milnes, and J. S. Pym, Compactifications of locally compact groups and closed subgroups, Trans. Amer. Math. Soc. 329 (1992), no. 1, 97–115. MR 92e:43004. Zbl 764.22005.
- P. Milnes, On vector-valued weakly almost periodic functions, J. London Math. Soc. (2) 22 (1980), no. 3, 467-472. MR 82i:43007. Zbl 456.43003.
- [8] _____, Almost periodic compactifications of direct and semidirect products, Colloq. Math. 44 (1981), no. 1, 125-136. MR 84h:43018. Zbl 482.43005.

MIRI: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BIRJAND, BIRJAND, IRAN

POURABDOLLAH: DEPARTMENT OF MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD, MASHHAD, IRAN

E-mail address: pourabd@science2.um.ac.ir