THE GENERAL IKEHATA THEOREM FOR *H*-SEPARABLE CROSSED PRODUCTS

GEORGE SZETO and LIANYONG XUE

(Received 26 March 1999)

ABSTRACT. Let *B* be a ring with 1, *C* the center of *B*, *G* an automorphism group of *B* of order *n* for some integer *n*, C^G the set of elements in *C* fixed under *G*, $\Delta = \Delta(B, G, f)$ a crossed product over *B* where *f* is a factor set from $G \times G$ to $U(C^G)$. It is shown that Δ is an *H*-separable extension of *B* and $V_{\Delta}(B)$ is a commutative subring of Δ if and only if *C* is a Galois algebra over C^G with Galois group $G|_C \cong G$.

Keywords and phrases. Crossed products, Galois extensions, *H*-separable extensions.

2000 Mathematics Subject Classification. Primary 16S35; Secondary 16W20.

1. Introduction. Let *B* be a ring with 1, ρ an automorphism of *B* of order *n*, $B[x;\rho]$ a skew polynomial ring with a basis $\{1, x, x^2, ..., x^{n-1}\}$ and $x^n = v \in U(B^{\rho})$ for some integer *n*, where B^{ρ} is the set of elements in *B* fixed under ρ and $U(B^{\rho})$ is the set of units of B^{ρ} .

In [4] it was shown that any skew polynomial ring $B[x;\rho]$ of prime degree n is an H-separable extension of B if and only if C is a Galois algebra over C^{ρ} with Galois group $\langle \rho |_C \rangle$ generated by $\rho |_C$ of order n. This theorem was extended to any degree n [5, Theorem 1]. Recently, the theorem was completely generalized by the present authors in [8], that is, let $B[x;\rho]$ be a skew polynomial ring of degree n for some integer n. Then, $B[x;\rho]$ is an H-separable extension of B if and only if C is a Galois algebra over C^{ρ} with Galois group $\langle \rho |_C \rangle \cong \langle \rho \rangle$. The purpose of the present paper is to generalize the above Ikehata theorem to an automorphism group of B (not necessarily cyclic) and f is an factor set from $G \times G$ to $U(C^G)$. We show that Δ is an H-separable extension of B and $V_{\Delta}(B)$ is a commutative subring of Δ if and only if C is a Galois algebra over C^G with Galois group $G|_C \cong G$.

2. Preliminaries and basic definitions. Throughout this paper, *B* represents a ring with 1, *C* the center of *B*, *G* an automorphism group of *B* of order *n* for some integer *n*, *B*^{*G*} the set of elements in *B* fixed under *G*, $\Delta = \Delta(B, G, f)$ a crossed product with a free basis $\{U_g \mid g \in G \text{ and } U_1 = 1\}$ over *B* and the multiplications are given by $U_g b = g(b)U_g$ and $U_g U_h = f(g,h)U_{gh}$ for $b \in B$ and $g,h \in G$ where *f* is a map from $G \times G$ to $U(C^G)$ such that f(g,h)f(gh,k) = f(h,k)f(g,hk), *Z* the center of Δ , \overline{G} the inner automorphism group of Δ induced by *G*, that is, $\overline{g}(x) = U_g x U_g^{-1}$ for each $x \in \Delta$ and $g \in G$. We note that f(g,1) = f(1,g) = f(1,1) = 1 for all $g \in G$ and \overline{G} restricted to *B* is *G*.

Let A be a subring of a ring S with the same identity 1. We denote $V_s(A)$ the

commutator subring of *A* in *S*. A ring *S* is called a *G*-Galois extension of *S^G* if there exist elements $\{a_i, b_i \in S, i = 1, 2, ..., m\}$ for some integer *m* such that $\sum_{i=1}^m a_i g(b_i) = \delta_{1,g}$. The set $\{a_i, b_i\}$ is called a *G*-Galois system for *S*. *S* is called an *H*-separable extension of *A* if there exists an *H*-separable system $\{x_i \in V_S(A), y_i \in V_{S \otimes_A S}(S) \mid i = 1, 2, ..., m\}$ for *S* over *A* for some integer *m* such that $\sum_{i=1}^m x_i y_i = 1 \otimes_A 1$.

3. The Ikehata theorem. In this section, we show that Δ is an *H*-separable extension of *B* and $V_{\Delta}(B)$ is a commutative subring of Δ if and only if *C* is a Galois algebra over C^G with Galois group $G|_C \cong G$. We begin with a lemma.

LEMMA 3.1. (a) $V_{\Delta}(B) = \sum_{g \in G} J_g U_g$ where $J_g = \{b \in B \mid ab = bg(a) \text{ for all } a \in B\}$. (b) $V_{\Delta \otimes_B \Delta}(\Delta) = \{\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h \mid b(g,h) \in J_{gh} \text{ and } k(b_{(k^{-1}g,h)}) f(k, k^{-1}g) = b_{(g,hk^{-1})} f(hk^{-1},k) \text{ for all } g, k \in G\}.$

(c) If $\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes U_h \in V_{\Delta \otimes_B \Delta}(\Delta)$, then $b_{(g,h)} U_{gh} \in V_{\Delta}(B)$.

(d) If $\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes U_h \in V_{\Delta \otimes_B \Delta}(\Delta)$, then $b_{(g,g^{-1})} = g(b_{1,1})(f(g^{-1},g))^{-1}$ for all $g \in G$.

PROOF. (a) Let $b \in J_g$. Then $a(bU_g) = (ab)U_g = bg(a)U_g = (bU_g)a$ for all $a \in B$. Hence $J_gU_g \subset V_{\Delta}(B)$. Therefore, $\sum_{g \in G} J_gU_g \subset V_{\Delta}(B)$. Conversely, let $\sum_{g \in G} b_gU_g \in V_{\Delta}(B)$. Then $a \sum_{g \in G} b_gU_g = \sum_{g \in G} b_gU_g a = \sum_{g \in G} b_g(a)U_g$ for all $a \in B$, and so $ab_g = b_gg(a)$ for all $a \in B$ and $g \in G$, that is, $b_g \in J_g$ for all $g \in G$. Thus $V_{\Delta}(B) \subset \sum_{g \in G} J_gU_g$.

(b) $x = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h \in V_{\Delta \otimes_B \Delta}(\Delta)$ if and only if bx = xb and $U_k x = xU_k$ for all $a \in B$ and $k \in G$. But

$$bx = \sum_{g \in G} \sum_{h \in G} bb_{(g,h)} U_g \otimes_B U_h,$$

$$xb = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h b = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B h(b) U_h$$

$$= \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g h(b) \otimes_B U_h = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} (gh) (b) U_g \otimes_B U_h,$$

(3.1)

so bx = xb if and only if $bb_{(g,h)} = b_{(g,h)}((gh)(b))$ for all $b \in B$ and $g, h \in G$, that is, $b_{(g,h)} \in J_{gh}$ by noting that $\{U_g \otimes_B U_h \mid g, h \in G\}$ is a basis for Δ over B. Moreover,

$$U_{k}x = U_{k}\sum_{g \in G}\sum_{h \in G}b_{(g,h)}U_{g} \otimes_{B}U_{h} = \sum_{g \in G}\sum_{h \in G}k(b_{(g,h)})U_{k}U_{g} \otimes_{B}U_{h}$$

$$= \sum_{g \in G}\sum_{h \in G}k(b_{(g,h)})f(k,g)U_{kg} \otimes_{B}U_{h}$$

$$= \sum_{g \in G}\sum_{h \in G}k(b_{(k^{-1}(kg),h)})f(k,k^{-1}(kg))U_{(kg)} \otimes_{B}U_{h}$$

$$= \sum_{l \in G}\sum_{h \in G}k(b_{(k^{-1}g,h)})f(k,k^{-1}l)U_{l} \otimes_{B}U_{h}$$

$$= \sum_{g \in G}\sum_{h \in G}k(b_{(k^{-1}g,h)})f(k,k^{-1}g))U_{g} \otimes_{B}U_{h},$$

(3.2)

and

$$\begin{aligned} xU_{k} &= \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_{g} \otimes_{B} U_{h} U_{k} = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_{g} \otimes_{B} f(h,k) U_{hk} \\ &= \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_{g} f(h,k) \otimes_{B} U_{hk} = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} f(h,k) U_{g} \otimes_{B} U_{hk} \\ &= \sum_{g \in G} \sum_{h \in G} b_{(g,(hk)k^{-1})} f((hk)k^{-1},k) U_{g} \otimes_{B} U_{hk} \\ &= \sum_{g \in G} \sum_{h \in G} b_{(g,(lk^{-1}))} f(lk^{-1},k) U_{g} \otimes_{B} U_{l} = \sum_{g \in G} \sum_{h \in G} b_{(g,(hk^{-1}))} f(hk^{-1},k) U_{g} \otimes_{B} U_{l}. \end{aligned}$$
(3.3)

Hence, $U_k x = x U_k$ if and only if $k(b_{(k^{-1}g,h)})f(k,k^{-1}g) = b_{(g,hk^{-1})}f(hk^{-1},k)$ for all $g,h,k \in G$.

(c) If $\sum_{g \in G} \sum_{h \in G} b_{g,h} U_g \otimes U_h \in V_{\Delta \otimes_B \Delta}(\Delta)$, then $b_{(g,h)} \in J_{gh}$ by (b); and so $b_{(g,h)} U_{gh} \in V_{\Delta}(B)$ by (a).

(d) If $\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes U_h \in V_{\Delta \otimes B\Delta}(\Delta)$, then $k(b_{(k^{-1}g,h)}) f(k,k^{-1}g) = b_{(g,hk^{-1})} f(hk^{-1},k)$ for all $g,h,k \in G$ by (b). Let k = g and h = 1. Then $b_{(g,g^{-1})} f(g^{-1},g) = g(b_{1,1}) f(g,1) = g(b_{1,1})$ for all $g \in G$. This implies that $b_{(g,g^{-1})} = g(b_{1,1}) (f(g^{-1},g))^{-1}$ for all $g \in G$.

THEOREM 3.2. Δ is an *H*-separable extension of *B* and $V_{\Delta}(B)$ is a commutative subring of Δ if and only if *C* is a Galois algebra over C^G with Galois group $G|_c \cong G$.

PROOF. (\Longrightarrow) Since Δ is an *H*-separable extension of *B* and *B* is a direct summand of Δ as a left *B*-module, $V_{\Delta}(V_{\Delta}(B)) = B$ [7, Proposition 1.2]. But $V_{\Delta}(B)$ is commutative, so $V_{\Delta}(B) \subset V_{\Delta}(V_{\Delta}(B)) = B$. Thus $V_{\Delta}(B) = C$.

Since Δ is an *H*-separable extension of *B* again, there exists an *H*-separable system $\{x_i \in V_{\Delta}(B), y_i \in V_{\Delta \otimes B\Delta}(\Delta) \mid i = 1, 2, ..., m\}$ for some integer *m* such that $\sum_{i=1}^m x_i y_i = 1 \otimes_B 1$. Let $y_i = \sum_{g \in G} \sum_{h \in G} b_{(g,h)}^{(i)} U_g \otimes_B U_h$. We claim that $\{a_i = x_i, b_i = b_{(1,1)}^{(i)} \mid i = 1, 2, ..., m\}$ is a *G*-Galois system for *C*. In fact, $a_i = x_i \in V_{\Delta}(B) = C$ and by Lemma 3.1(b), $b_i = b_{(1,1)}^{(i)} \in J_1 = C$. Moreover, since $y_i = \sum_{g \in G} \sum_{h \in G} b_{(g,h)}^{(i)} U_g \otimes_B U_h \in V_{\Delta \otimes_B \Delta}(\Delta), b_{(g,h)}^{(i)} U_{gh} \in V_{\Delta}(B)$ by Lemma 3.1(c). But $V_{\Delta}(B) = C$, so $b_{(g,h)}^{(i)} = 0$ when $gh \neq 1$. Thus, $y_i = \sum_{g \in G} b_{(g,g^{-1})}^{(i)} U_g \otimes_B U_{g^{-1}}$. By Lemma 3.1(d), $b_{(g,g^{-1})}^{(i)} = g(b_{(1,1)}^{(i)})(f(g^{-1},g))^{-1} = g(b_i)(f(g^{-1},g))^{-1}]$, so $y_i = \sum_{g \in G} g(b_i)(f(g^{-1},g))^{-1} U_g \otimes_B U_{g^{-1}}$. Therefore,

$$1 \otimes_{B} 1 = \sum_{i=1}^{m} x_{i} y_{i} = \sum_{i=1}^{m} a_{i} \sum_{g \in G} g(b_{i}) (f(g^{-1},g))^{-1} U_{g} \otimes_{B} U_{g^{-1}}$$

$$= \sum_{g \in G} \sum_{i=1}^{m} a_{i} g(b_{i}) (f(g^{-1},g))^{-1} U_{g} \otimes_{B} U_{g^{-1}}.$$
(3.4)

This implies that $\sum_{i=1}^{m} a_i g(b_i) (f(g^{-1},g))^{-1} = \delta_{1,g}$, so $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g}$, that is $\{a_i, b_i \mid i = 1, 2, ..., m\}$ is a *G*-Galois system for *C*. Therefore, *C* is a Galois algebra over C_G with Galois group $G \mid_C \cong G$.

(\Leftarrow) Since *C* is a Galois algebra over *C^G* with Galois group with $G|_C \cong G$, there exists a *G*-Galois system $\{a_i, b_i \in C \mid i = 1, 2, ..., m\}$ for some integer *m* such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g}$. Let $x_i = a_i$ and $y_i = \sum_{g \in G} g(b_i) U_g \otimes_B U_g^{-1}$. We claim that $\{x_i \in C \mid i = 1, 2, ..., m\}$

 $V_{\Delta}(B), \ y_i \in V_{\Delta \otimes_B \Delta}(\Delta) \mid i = 1, 2, ..., m$ } is an *H*-separable system for Δ over *B*. In fact, $x_i = a_i \in C \subset V_{\Delta}(B)$. Noting that $U_g^{-1} = f(g, g^{-1})^{-1}U_{g^{-1}}$, we have $U_g^{-1}b = f(g, g^{-1})^{-1}U_{g^{-1}}b = f(g, g^{-1})^{-1}U_{g^{-1}}b = f(g, g^{-1})^{-1}g^{-1}(b)U_{g^{-1}} = g^{-1}(b)f(g, g^{-1})^{-1}U_{g^{-1}} = g^{-1}(b)U_g^{-1}$ for any $b \in B$. Hence

$$b y_{i} = b \sum_{g \in G} g(b_{i}) U_{g} \otimes_{B} U_{g}^{-1} = \sum_{g \in G} g(b_{i}) b U_{g} \otimes_{B} U_{g}^{-1}$$

$$= \sum_{g \in G} g(b_{i}) U_{g} g^{-1}(b) \otimes_{B} U_{g}^{-1} = \sum_{g \in G} g(b_{i}) U_{g} \otimes_{B} g^{-1}(b) U_{g}^{-1}$$

$$= \sum_{g \in G} g(b_{i}) U_{g} \otimes_{B} U_{g}^{-1} b = y_{i} b.$$
(3.5)

for any $h \in G$,

$$\begin{aligned} U_{h} \mathcal{Y}_{i} &= U_{h} \sum_{g \in G} g(b_{i}) U_{g} \otimes_{B} U_{g}^{-1} = \sum_{g \in G} (hg)(b_{i}) U_{h} U_{g} \otimes_{B} U_{g}^{-1} \\ &= \sum_{g \in G} (hg)(b_{i}) f(h,g) U_{hg} \otimes_{B} U_{g}^{-1} = \sum_{g \in G} (hg)(b_{i}) U_{hg} \otimes_{B} f(h,g) U_{g}^{-1} \\ &= \sum_{g \in G} (hg)(b_{i}) U_{hg} \otimes_{B} U_{hg}^{-1} U_{hg} f(h,g) U_{g}^{-1} \\ &= \sum_{g \in G} (hg)(b_{i}) U_{hg} \otimes_{B} U_{hg}^{-1} U_{h} U_{g} U_{g}^{-1} = \sum_{g \in G} (hg)(b_{i}) U_{hg} \otimes_{B} U_{hg}^{-1} U_{h} \\ &= \sum_{g \in G} (hg)(b_{i}) U_{kg} \otimes_{B} U_{hg}^{-1} U_{h} U_{g} U_{g}^{-1} = \sum_{g \in G} (hg)(b_{i}) U_{hg} \otimes_{B} U_{hg}^{-1} U_{h} \\ &= \sum_{k \in G} k(b_{i}) U_{k} \otimes_{B} U_{k}^{-1} U_{h} = \mathcal{Y}_{i} U_{h}. \end{aligned}$$
(3.6)

Thus $y_i \in V_{\Delta \otimes B\Delta}(\Delta)$. Moreover, $\sum_{i=1}^m x_i y_i = \sum_{i=1}^m a_i \sum_{g \in G} g(b_i) U_g \otimes_B U_g^{-1} = \sum_{g \in G} \sum_{i=1}^m a_i g(b_i) U_g \otimes_B U_g^{-1} = \sum_{g \in G} \delta_{1,g} U_g \otimes_B U_g^{-1} = 1 \otimes 1$. This implies that $\{x_i \in V_\Delta(B), y_i \in V_{\Delta \otimes B\Delta}(\Delta) \mid i = 1, 2, ..., m\}$ is an *H*-separable system for Δ over *B*. Thus, Δ is an *H*-separable extension of *B*. Moreover, *B* is a direct summand of Δ as a left *B*-module, so $V_\Delta(V_\Delta(B)) = B$ [7, Proposition 1.2]. But then, the center of Δ , $Z \subset B$; and so $Z = C^G$. Clearly, $V_\Delta(B)^{\tilde{G}} = Z = C^G$ and $C \subset V_\Delta(B)$, so $V_\Delta(B)$ is a *G*-Galois algebra over C^G with the same Galois system as *C*. Therefore, $V_\Delta(B) = C$ which is commutative. The proof is completed.

The Ikehata theorem is an immediate consequence of Theorem 3.2 by the fact that any Galois algebra with a cyclic Galois group is a commutative ring [1, Theorem 11].

COROLLARY 3.3 (the Ikehata theorem). Let ρ be an automorphism of B of order n and $B[x;\rho]$ a skew polynomial ring of degree n with $x^n = v \in U(B^{\rho})$ for some integer n. Then, $B[x;\rho]$ is an H-separable extension of B if and only if C is a Galois algebra over C^{ρ} with Galois group $\langle \rho | c \rangle \cong \langle \rho \rangle$.

PROOF. It is easy to check that if ρ has order n, then $x^n = v \in U(C^{\rho})$. Let $B[x;\rho]$ be an H-separable extension of B. Then $V_{B[x;\rho]}(B)$ is a Galois algebra over C^{ρ} with cyclic Galois algebra group $\langle \bar{\rho} \rangle$ generated by $\bar{\rho}$ [6, Theorem 3.2]; and so $V_{B[x;\rho]}(B)$ is a commutative ring by [1, Theorem 11]. On the other hand, $B[x;\rho]$ is a crossed product $\Delta(B, \langle \rho \rangle, f)$ where $f : \langle \rho \rangle \times \langle \rho \rangle \rightarrow U(C^{\rho})$ by $f(\rho^i, \rho^j) = 1$ if i + j < n, $f(\rho^i, \rho^j) = v$ if $i + j \ge n$, and $U_{\rho^i} = x^i$ for i = 0, 1, 2, ..., n - 1. Thus the corollary is immediate from Theorem 3.2.

660

Next we prove more characterizations of the ring *B* as given in Theorem 3.2.

THEOREM 3.4. Assume Δ is an *H*-separable extension of *B*. Then the following statements are equivalent:

(1) $V_{\Delta}(B)$ is a commutative subring of Δ .

(2) $V_{\Delta}(B) = C$.

(3) $V_{\Delta}(C) = B$.

(4) $J_g = \{0\}$ for each $g \neq 1$ where $J_g = \{b \in B \mid ab = bg(a) \text{ for all } a \in B\}$.

(5) $I_q = \{0\}$ for each $g \neq 1$ where $I_q = \{b \in B \mid cb = bg(c) \text{ for all } c \in C\}$.

PROOF. We prove $(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (4) \Longrightarrow (5) \Longrightarrow (1)$.

 $(1) \Rightarrow (2)$. This was given in the proof of the necessity of Theorem 3.2.

(2) \Rightarrow (3). Clearly, $B \subseteq V_{\Delta}(C)$. Conversely, for each $\sum_{g \in G} b_g U_g$ in $V_{\Delta}(C)$, we have $c(\sum_{g \in G} b_g U_g) = (\sum_{g \in G} b_g U_g)c$ for each c in C, so $cb_g = b_g g(c)$, that is $b_g (c - g(c)) = 0$ for each $g \in G$ and $c \in C$. But C is a commutative G-Galois extension of C^G , so the ideal of C generated by $\{c - g(c) \mid c \in C\}$ is C when $g \neq 1$ [2, Proposition 1.2(5)]. Hence $b_g = 0$ for each $g \neq 1$. But then $\sum_{g \in G} b_g U_g = b_1 \in B$. Thus $V_{\Delta}(C) \subseteq B$, and so $V_{\Delta}(C) = B$.

(3) \Rightarrow (4). By hypothesis, $V_{\Delta}(C) = B$ so $V_{\Delta}(B) \subset V_{\Delta}(C) = B$. But $V_{\Delta}(B) = \sum_{g \in G} J_g U_g$ by Lemma 3.1(a), so $\sum_{g \in G} J_g U_g = V_{\Delta}(B) \subset B$. Thus $J_g = \{0\}$ for each $g \neq 1$.

(4) \Rightarrow (5). By Lemma 3.1(a) again, $V_{\Delta}(B) = \sum_{g \in G} J_g U_g$, and by hypothesis, $J_g = \{0\}$ for each $g \neq 1$, so $V_{\Delta}(B) = J_1 = C$. Hence part (2) holds; and so $V_{\Delta}(C) = B$ by (2) \Rightarrow (3). Clearly, $V_{\Delta}(C) = \sum_{g \in G} I_g U_g$, so $\sum_{g \in G} I_g U_g = B$. Thus $I_g = \{0\}$ for each $g \neq 1$.

 $(5) \Longrightarrow (1)$. Since $C \subset B$, $J_g \subset I_g$ for all $g \in G$. Hence $I_g = \{0\}$ implies $J_g = \{0\}$. But then $V_{\Delta}(B) = \sum_{g \in G} J_g U_g = J_1 = C$ which is commutative.

COROLLARY 3.5. *C* is a Galois algebra over C^G with Galois group $G|_c \cong G$ if and only if Δ is an *H*-separable extension of *B* and anyone of the equivalent conditions in Theorem 3.4 holds.

We conclude the present paper with two examples of crossed products Δ to demonstrate our results:

(1) Δ is an *H*-separable extension of *B*, but $V_{\Delta}(B)$ is not commutative,

(2) $V_{\Delta}(B)$ is commutative, but Δ is not an *H*-separable extension of *B*.

Hence *C* is not a Galois algebra over C^G with $G \mid_C \cong G$ in either example by Theorem 3.2.

EXAMPLE 3.6. Let B = Q[i, j, k] = Q + Qi + Qj + Qk be the quaternion algebra over the rational field Q, $G = \{g_1 = 1, g_i, g_j, g_k | g_i(x) = ixi^{-1}, g_j(x) = jxj^{-1}, g_k(x) = kxk^{-1}$ for all $x \in B\}$, and $\Delta = \Delta(B, G, 1)$. Then

(1) The center of Δ , Z = Q = C, the center of *B*.

(2) Δ is a separable extension of *B* and *B* is an Azumaya *Q*-algebra, so Δ is an Azumaya *Q*-algebra. Since Δ is a free left *B*-module, Δ is an *H*-separable extension of *B* [3, Theorem 1].

(3) $V_{\Delta}(B) = Q + QiU_{g_i} + QjU_{g_j} + QkU_{g_k}$ which is not commutative, so *C* is not a Galois algebra over C^G with Galois group $G \mid_C \cong G$ by Theorem 3.2.

EXAMPLE 3.7. Let B = Q[i, j, k] = Q + Qi + Qj + Qk be the quaternion algebra over the rational field Q, $G = \{g_1 = 1, g_i | g_i(x) = ixi^{-1} \text{ for all } x \in B\}$, and $\Delta = \Delta(B, G, 1)$.

Then

(1) The center of *B*, $C = Q = C^G$.

(2) $V_{\Delta}(B) = Q + QiU_{g_i}$ which is commutative.

(3) The center of Δ , $Z = Q + QiU_{g_i} \neq C^G$. On the other hand, assume that Δ is an H-separable extension of B. Since B is a direct summand of Δ as a left B-module, $V_{\Delta}(V_{\Delta}(B)) = B$ [7, Proposition 1.2]. This implies that the center of Δ , $Z = C^G$, a contradiction. Thus Δ is not an H-separable extension of B. Therefore, C is not a G-Galois algebra over C^G with $G|_C \cong G$ by Theorem 3.2.

ACKNOWLEDGEMENT. This paper was written under the support of a Caterpillar Fellowship at Bradley University. We would like to thank Caterpillar Inc. for the support.

REFERENCES

- F. R. DeMeyer, Some notes on the general Galois theory of rings, Osaka J. Math. 2 (1965), 117-127. MR 32#128. Zbl 143.05602.
- [2] F. R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, Heidelberg, New York, 1971. MR 43#6199. Zbl 215.36602.
- [3] S. Ikehata, Note on Azumaya algebras and H-separable extensions, Math. J. Okayama Univ. 23 (1981), no. 1, 17–18. MR 82j:16012. Zbl 475.16003.
- [4] _____, On H-separable polynomials of prime degree, Math. J. Okayama Univ. 33 (1991), 21-26. MR 93g:16043. Zbl 788.16022.
- [5] S. Ikehata and G. Szeto, On H-separable polynomials in skew polynomial rings of automorphism type, Math. J. Okayama Univ. 34 (1992), 49–55 (1994). MR 95f:16033. Zbl 819.16028.
- [6] _____, On H-skew polynomial rings and Galois extensions, Rings, Extensions, and Cohomology (Evanston, IL, 1993) (New York), Lecture Notes in Pure and Appl. Math., vol. 159, Dekker, 1994, pp. 113–121. MR 95j:16033. Zbl 815.16009.
- K. Sugano, Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265-270. MR 37#1412. Zbl 199.0790.
- [8] G. Szeto and L. Xue, On the Ikehata theorem for H-separable skew polynomial rings, Math. J. Okayama Univ., to appear.

SZETO: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, ILLINOIS 61625, USA *E-mail address*: szeto@bradley.bradley.edu

XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, ILLINOIS 61625, USA *E-mail address*: lxue@bradley.bradley.edu

662