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A NOTE ON M-IDEALS IN CERTAIN ALGEBRAS OF OPERATORS
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Abstract. Let X = (
∑∞
n=1�n1 )p, p > 1. In this paper, we investigate M-ideals which are

also ideals in L(X), the algebra of all bounded linear operators on X. We show that K(X),
the ideal of compact operators on X is the only proper closed ideal in L(X) which is both
an ideal and an M-ideal in L(X).
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1. Introduction. Since Alfsen and Effros [1, 2] introduced the notion of an M-ideal
in a Banach space, many authors have studied M-ideals in algebras of operators. An
interesting problem has been characterizing and finding those Banach spaces X for
which K(X), the space of all compact linear operators on X, is anM-ideal in L(X), the
space of all continuous linear operators on X [4, 8, 9, 11, 12].
It is known that ifX is a Hilbert space, �p(1<p <∞) or c0, thenK(X) is anM-ideal in

L(X) [6, 8, 12] while K(�1) and K(�∞) are notM-ideals in the corresponding spaces of
operators [12]. Smith and Ward [12] proved thatM-ideals in a complex Banach algebra
with identity are subalgebras and that they are two-sided algebraic ideals if the algebra
is commutative. They also proved that M-ideals in a C∗-algebra are exactly the two-
sided ideals [12]. Later, Cho and Johnson [5] proved that if X is a uniformly convex
Banach space, then every M-ideal in L(X) is a left ideal, and if X∗ is also uniformly
convex, then every M-ideal in L(X) is a two-sided ideal in L(X).
Flinn [7], and Smith and Ward [13] proved that K(�p) is the only nontrivial M-ideal

in L(�p) for 1 < p < ∞. Kalton and Werner [10] proved that if 1 < p, q < ∞, X =
(
∑∞

n=1�nq )p with complex scalars, then K(X) is the only nontrivial M-ideal in L(X). In
their proof of this fact, Kalton and Werner [13] used the uniform convexity of X and
X∗. In this case, M-ideals in L(X) are two-sided closed ideals in L(X) [5].
In this paper, we investigateM-ideals which are also ideals in L(X) forX=(∑∞

n=1�
n
1 )p ,

1< p <∞. In our case, neither X nor X∗ is uniformly convex. Therefore, no relation-
ships between M-ideals and algebraic ideals in L(X) seem to be known. But still we
can use Kalton and Werner’s proof in [10] without using uniform convexity of X and
X∗ to prove that K(X) is the only nontrivial M-ideal in L(X) which is also a closed
ideal in L(X) (Theorem 3.3). By duality we have the same conclusion for the space
(
∑∞

n=1�n∞)p , 1<p <∞.

2. Preliminaries. A closed subspace J of a Banach space X is said to be an
L-summand (respectively, M-summand) if there exists a closed subspace J′ of X
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such that X is an algebraic direct sum X = J ⊕ J′ and satisfies a norm condition
‖j+j′‖ = ‖j‖+‖j′‖ (respectively, ‖j+j′‖ =max{‖j‖,‖j′‖}) for all j ∈ J and j′ ∈ J′.
In this case, we write X = J⊕1 J′ (respectively, X = J⊕∞ J′) and the projection P on X
with rang J is called an L-projection (respectively, anM-projection). A closed subspace
J of a Banach space X is an M-ideal in X if the annihilator J⊥ of J is an L-summand
in X∗.
Let A be a complex Banach algebra with identity e. The state space S of A is defined

to be {φ∈A∗ :φ(e)= ‖φ‖ = 1}. An element h∈A is said to be Hermitian if ‖eiλh‖ = 1
for all real number λ. Equivalently, h is Hermitian if and only if φ(h) is real for every
φ∈ S [3, page 46].
In what follows, Z always denote a complex Banach space (

∑∞
n=1�

n
1 )p , the �p-sum

of �n1 ’s for 1<p <∞. For each n, let {enl}nl=1 be the standard basis of �n1 . Then these
bases string together to form the standard basis {en}∞n=1 of Z and each T ∈ L(Z) has
a matrix representation with respect to {en}∞n=1. If T ∈ L(Z) has the matrix whose
(i,j)-entry is tij , then we can write T =

∑
i,j≥1 tijej⊗ei, where ej⊗ei is the rank 1 map

sending ej to ei. Observe that T(ej) forms the jth column vector of the matrix of T
and ‖Tej‖ ≤ ‖T‖ for all j = 1,2, . . . . If the matrix of T has at most one nonzero entry
in each row and column, then ‖T‖ is the l∞-norm of the sequence of nonzero entries.
A number of facts which hold in L(�p),1 < p <∞, still hold in L(Z). If the matrix

of T ∈ L(Z) is a diagonal matrix (tij) with real diagonal entries, then for each real λ
the matrix of eiλT is also a diagonal matrix with diagonal matrix entries eiλtii . Thus
T ∈ L(Z) is Hermitian if the matrix T is a diagonal matrix with real entries.
Flinn [7] proved that if M is an M-ideal in L(�p),1 < p < ∞ and h is a Hermitian

element in L(�p) with h2 = I, then hM ⊆ M and Mh ⊆ M . From this he proved that
if h is any diagonal matrix with real entries, then hM ⊆M and Mh ⊆M . His proof is
valid for Z in place of �p . Thus we have the following.

Lemma 2.1. If M is an M-ideal in L(Z) and h∈ L(Z) is a diagonal matrix with real
entries, then hM ⊆M and Mh⊆M .

The M-ideal structure of L(X) for X = (
∑∞

n=1�nq )p,1 < p,q < ∞ was studied by
Kalton and Werner [10]. Some of their proofs for X are still good for Z . One of them
is the following.

Lemma 2.2. There is a constant C such that, whenever (kn) is a sequence of positive
integers with limsupkn =∞, then (

∑∞
n=1�

kn
1 )p is C-isomorphic to (

∑∞
n=1�

n
1 )p .

Proof. See proof of Lemma 3.1 of [10].

We recall that a Banach space X is C-isomorphic to a Banach space Y if there exists
an isomorphism T form X onto Y such that

1
C
‖x‖ ≤ ‖Tx‖ ≤ C‖x‖ (2.1)

for every x ∈X. We use the following lemma which is due to Kalton and Werner [10].

Lemma 2.3 [10]. Let X be a Banach space, � ⊂ L(X) be a two-sided ideal, and P a
projection onto a complemented subspace E of X which is isomorphic to X.
(a) If P ∈�, then �= L(X).
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(b) If E is C-isomorphic with X and � contains an operator T with ‖T−P‖<(C‖P‖−1),
then �= L(X).

3. M-ideals in L((
∑∞

n=1�
n
1 )p). A matrix carpentry used by Flinn [7] to characterize

theM-ideal structure in L(�p) can be used to some extent in our case Z = (
∑∞

n=1�
n
1 )p .

The proof of the following lemma is really a minor modification of Flinn’s proof in [7].

Lemma 3.1. If M is a nontrivial M-ideal in L(Z), then K(Z)⊆M .

Sketch of the proof. Let us call two positive integers i and j are in the same
block if n(n+1)/2 < i, j ≤ (n+1)(n+2)/2 for some n. Using Lemma 2.1, we can
follow Flinn’s proof of the second corollary to Lemma 1 in [7]. The only modification
is the following: to prove 21/q < |tpl+tkl| ≤ 21/q, we consider two cases. If p and k are
in a different block, Flinn’s proof just run through. If p and k are in the same block,
then 21/q < |tpl+tkl| ≤ ‖T(el)‖ ≤ 21/q.
The proof of the following lemma is contained in the proof of Theorem 3.3 in [10].

Lemma 3.2. If � is a closed ideal strictly containing K(Z) then � contains all the
operators which factor through �p .

The proof of the following theorem is a modification of that of Kalton and Werner
[10]. Here we can go around the use of uniform convexity.

Theorem 3.3. If � is a closed ideal and also an M-ideal in L(Z) strictly containing
K(Z), then �= L(Z).

Proof. We recall that the standard basis {enl}nl=1 of �n1 string together to form
the standard basis {en}∞n=1 of Z . If {e′n}∞n=1 is the standard basis of �p , then the map
en → e′n gives a contraction from Z to �p . Since E = span{enl}∞n=1 is isometric to �p ,
there exists a norm one operator A from Z to E carrying en to en1 via e′n. Thus A
factors through �p . By Lemma 3.2, A∈�.
Since � is also an M-ideal, by Proposition 2.3 in [14], there exists a net (Hα) ⊆ �

such that

limsup‖±A+(Id−Hα)‖ = 1. (3.1)

To simplify subsequent calculations, let us write the standard basis of Z as {enl :n∈
N, 1 ≤ l ≤ n} and let {e∗nl : n ∈ N, 1 ≤ l ≤ n} be the corresponding biorthogonal
functionals. Then Aenl = eml, wherem= (n−1)n/2+l.
Given 0< ε < 1,

max± ‖±A+(Id−Hα)‖< 1+ε (3.2)

for infinitely many α’s. For such an α and every enl,

max± ‖±Aenl−(Id−Hα)enl‖< 1+ε. (3.3)
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Put αkj = e∗kj(Id−Hα)enl. Then,

max±
∥∥±Aenl+(Id−Hα)enl

∥∥p

=max±
∥∥±em1−(Id−Hα)enl

∥∥p

=
(
max± |αm1±1|+|αm2|+···+|αmm|

)p+
∑

k≠m




k∑

j=1
|αkj|



p

< (1+ε)p.

(3.4)

Since max± |αm1±1| ≥ 1, it follows that
∑

k≠m(
∑k

j=1 |αkj|)p < (1+ε)p−1 and |αm2|+
···+|αmm| < ε. Since

√
1+|αm1|2 ≤max± |αm1±1| < 1+ε,|αm1| <

√
2ε+ε2 < 2√ε.

Thus ‖(Id−Hα)enl‖ < ((3
√
ε)p+(1+ε)p−1)1/p → 0 as ε→ 0 uniformly in n and l. It

follows that, for any n,

‖Pn(Id−Hα)Pn‖ ≤ ‖Pn(Id−Hα)jn‖ ≤
(
(3
√
ε)p+(1+ε)p−1)1/p , (3.5)

where Pn is the projection on Z with range �n1 ⊆ Z and jn is the canonical injection of
�n1 into Z .
By Lemma 3.2 in [10], there exists a sequence (kn) such that, for the canonical pro-

jection P from Z onto (
∑∞

n=1�
kn
1 )p ,

‖P−PHαP‖ = ‖P(Id−Hα)P‖< 3
(
(3
√
ε)p+(1+ε)p−1)1/p . (3.6)

Since PHαP ∈� and ε > 0 is arbitrary small, by Lemmas 2.2 and 2.3, �= L(Z).

From Lemma 3.1 and Theorem 3.3, we have the following.

Corollary 3.4. If � is a proper ideal and also an M-ideal in L(Z), then �=K(Z).

Remark. By duality, all the lemmas, Theorem 3.3 and Corollary 3.4 hold with Z∗ =
(
∑∞

n=1�n∞)p, 1<p <∞, in place of Z .
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