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1. Introduction. Let L2[0, T] denote the space of real valued Lebesgue measurable,
square integrable functions on [0,T]. Let C[0,T] denote Wiener space, that is, the
space of real valued, continuous functions on [0, T] which vanish at 0.

In various Feynman integration theory the integrand F of the Feynman integral is a
functional of the standard Wiener process. In [1], Cameron and Storvick introduced a
Banach algebra S (L2[0, T]) of functionals on Wiener space which are a kind of stochas-
tic Fourier transform of complex Borel measures on L2[0, T]. Then they proved the
existence of the analytic Feynman integral for functionals in S(L2[0, T]). In [4], Chung
and Skoug introduced the concept of a conditional Feynman integral of a functional
on Wiener space given a functional X and established the existence of the conditional
analytic Feynman integral for all functionals in the Banach algebra S(L2[0,T]). In this
paper we extend the results involving the analytic Feynman and conditional analytic
Feynman integrals of functionals of the standard Wiener process to those of function-
als involving a more general stochastic process. We note that the Wiener process is
free of drift and is stationary in time. However, the stochastic process considered in
this paper is a process subject to drift and is nonstationary in time. We also use this
conditional generalized analytic Feynman integral to provide a solution to an integral
equation formally equivalent to the generalized Schrodinger equation.

2. Definitions and preliminaries. Let D = [0,T] and let (Q,%,P) be a probability
measure space. A real valued stochastic process Y on (Q,%,P) and D is called a gen-
eralized Brownian motion process if Y(0,w)=0a.e.andforO<ty <ty <---<t, <T,
the n-dimensional random vector (Y (¢, w),...,Y (t,,w)) is normally distributed with
the density function
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((n;—alt;) - ( (1)) e
1 & nj—al(tj))—(nj-1—a(tj-1
.exp{_zAgz b(tj)—b(tj-1) }

where 7 = (n1,...,NMn), No = 0, = (t1,...,tn), to = 0, and a(t) is a continuous real-
valued function of bounded variation with a(0) = 0, and b(t) is a strictly increasing,
continuous real-valued function with b(0) = 0.

As explained in [9, pages 18-20], Y induces a probability measure p on the measur-
able space (RP,%BP) where R? is the space of all real-valued functions x(t), t € D, and
AP is the smallest o-algebra of subsets of R” with respect to which all the coordinate
evaluation maps e;(x) = x(t) defined on RP are measurable. The triple (R?, %P, ) is
a probability measure space.

We note that the generalized Brownian motion process Y determined by a(-) and
b(-) is a Gaussian process with mean function a(t) and covariance function r (s,t) =
min{b(s),b(t)}.By[9, Theorem 14.2, page 187], the probability measure y induced by
Y, taking a separable version, is supported by C, 5[0, T ] (which is equivalent to the Ba-
nach space of continuous functions x on [0, T'] with x(0)=0 under the sup norm). Hence
(Capl0,T],B(Capl0,T]),u) is the function space induced by Y where B(C,,[0,T])
is the Borel o-algebra of C, [0, T]. Note that we can also express x in the form

x(t)=w((b(t))+a(t), 0<t<T (2.2)

where w(-) is the standard Brownian motion process.

A subset B of C;,,[0,T] is said to be scale-invariant measurable [2, 5] provided pB is
B(Capl[0, T])-measurable for all p > 0, and a scale-invariant measurable set N is said
to be scale-invariant null set provided pu(pN) = 0 for all p > 0. A property that holds
except on a scale-invariant null set is said to hold scale-invariant almost everywhere
(s-a.e.).

Let Liib[O, T] be the Hilbert space of functionals on [0, T] which are Lebesgue mea-
surable and square integrable with respect to the Lebesgue Stieltjes measures on [0, T']
induced by a(-) and b(-); i.e.,

2 T T
L;,[0,T]= {v : JO v°(s)db(s) <o and JO ve(s)dlal(s) < 00} (2.3)

where |a| denotes total variation. For h € L(Zl’b[O,T] with ||h]| > 0, let z(x,t) denote
the Paley-Wiener-Zygmund (PWZ) stochastic integral

t
z(x,t) = L h(s)dx(s), (2.4)

let B(t) = fot h2(s)db(s), and let x(t) = f(fh(s)da (s). Then z is a Gaussian process
with mean

t
Ex[z(x,t)] = L h(u)da(u) = x(t) (2.5)
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and covariance function
SAL
Ex[(z(x,s)—a(s))(z(x,t) —ax(t))] = Jo h2(u)db(u) = B(s At) (2.6)

where s At is the minimum of s and t. Of course if h(t) =1, a(t) =0, and b(t) =t on
[0, T], then the Gaussian process (2.4) is an ordinary Wiener process.
We denote the function space integral of a B(C, [0, T])- measurable function F by

E[F] =f Fx) dp(x) 2.7)

Capl0,T]

whenever the integral exists.
First we state the definition of the conditional function space integral [4, 8].

DEFINITION 2.1. Let X be a real-valued measurable function on C, ,[0,T] whose
probability distribution function uy is absolutely continuous with respect to Lebesgue
measure on R. Let F be a complex-valued p-integrable function on C, [0, T]. Then the
conditional integral of F given X, denoted by E[F | X](n), is a Lebesgue measurable
function of n, unique up to null sets in R, satisfying the equation

j F(x) du(x) =j E[F | X1(1) dpx () 2.8)
X-1(B) B

for all Borel sets B in R.

We are now ready to state the definitions of the generalized analytic Feynman inte-
gral and the conditional generalized analytic Feynman integral [4, 3].

DEFINITION 2.2. Let C denote the complex numbers. Let C, = {A € C:ReA > 0}
and C. = {A € C:A #0and ReA > 0}. Let F: Cap[0,T] — C be such that for each
A > 0, the function space integral

T =j F(A22(x, ) du(x) = Ex[FA"122(x, -))] (2.9)

Capl0,T]

exists for all A > 0. If there exists a function J* (A) analyticin C, such that J*(A) = J(A)
for all A > 0, then J*(A) is defined to be the analytic function space integral of F over
Cap[0,T] with parameter A, and for A € C, we write

E“M[F] = Ex"™ [F(z(x,)] = J*(A). (2.10)

Let g # 0 be a real number and let F be a function such that E4"A[F] exists for all
A € C,. If the following limit exists, we call it the generalized analytic Feynman integral
of F with parameter q and we write

Ea[F] = EXY[F(z(x,-))] = lim E“[F] (2.11)
am

where A approaches —iq through C,.
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DEFINITION 2.3. Let F: C4,[0,T] — C be such that for each A > 0,
J [F(A™12z(x,)) | du(x) < . (2.12)
Ca,b[OvT]

Let X : C4p[0,T] — R be a scale-invariant measurable function. For A > 0, let
Ja(m) = Ex[F(A™Y2z(x,)) | X(A"2x)](n) (2.13)

denote the conditional function space integral of F(A~1/2z(x,-)) given X (A~1/2x). If
for a.e. n € R, there exists a function J; (n) analyticin A on C, such that J¥(n) = Ja(n)
forall A > 0, then J3 (-) is defined to be the conditional analytic function space integral
of F given X with parameter A and we write

EY™[F | X1(n) = EX"™ [F(2(x, ) | X(x)](n) = J3 (). (2.14)
If for fixed real g # 0 the limit

Alim E*\[F | X1(n) (2.15)
—Zig

exists for a.e. n € R, where A — —ig through C,, we will denote the value of this limit
by E;qu [F | X](n) and call it the conditional generalized analytic Feynman integral
of F given X with parameter q.

REMARK 2.4. In [8], Park and Skoug gave a formula for expressing conditional
Wiener integrals in terms of ordinary Wiener integrals; namely that for A > 0,

Ex[F(A12z(x,-)) | A72z(x,T)](n)

1 12 BC) B() (2.16)
_ 1/2 N A-1/2
E,. [F ()\ z(x,")—A B(T)Z(X,T)+B(T) n)]

where B(t) = f(f h?%(s)db(s). Thus we have that

any _ _am L BC) B()
$MFE(z(x,9) | z(x,T)](n) = Ex [F(z(x.) B(T)Z(X’T)JFB(T)'])} (2.17)

anfy . _ anfy Ry B() B()
Ex "*[F(z(x,-)) | z(x,T)](n) = Ex [F(z(x,) B(T)z(x,T)JrB(T)nﬂ (2.18)

where in (2.17) and (2.18)the existence of either side implies the existence of the other
side and their equality.
The following function space integral formula is used throughout this paper:

Ex[exp{iA="2(v,x)}] = exp{—%(vz,b) +i7\‘”2(v,a)} (2.19)
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for A >0, v e Li’b[O,T], and where (v,x) denotes the PWZ stochastic integral
fOTv(s)dx(s) and (v2,b) denotes the Lebesgue Stieltjes integral fOTvz(s) dab(s).

3. Generalized analytic Feynman integrals. Let M (lellb[O, T]) be the space of C-
valued, countably additive finite Borel measures on Liyb[O,T]. The Banach algebra
S(Liyb[o, T1]) consists of functionals F on C, [0, T] expressible in the form

F(x) :J exp{i(v,x)}ldo(v) (3.1)

13,10,

for s-a.e. x € Cz[0,T] where o is an element of M(Liyh[O,T]). Further works on
S(Lﬁ‘b [0,T]) shows that it contains many functionals of interest in Feynman integra-
tion theory [1, 3, 4, 6, 7].

REMARK 3.1. (i) Throughout the remainder of this paper, since we are usually con-
sidering functionals in the Banach algebra S (Lg‘b[o, T1), we will always assume that
h is an element of L [0,T] with ||h| > 0. This will insure that the various Lebesgue
Stieltjes integrals that arise will exist. For example, the Lebesgue Stieltjes integrals
(v2h2,b), (vh?,b), and (vh,a) will exist for all v € Liyh[O,T].

(ii) Note that for F € S(Ltzl’b[o, T1), the function G : C4,,[0,T] — C given by

G(x)=F(z(x,-)) (3.2)

with h € L., [0, T], belongs to the Banach algebra S(Liyb[o, TDh [3].
The following lemma follows easily from the definition of the PWZ stochastic inte-
gral.

LEMMA 3.2 [3]. Foreachv € Liyb[o, T] and each h € L,,[0,T],

JOTv(s)dz(x,s) = jOTv(s)d U;h(u)dx(u)] =(vh,x) (3.3)

for s-a.e. x € Cq[0,T].

THEOREM 3.3. LetF € S(Lih[O, T]) be given by (3.1) and let z(x,t) be given by (2.4)
with h € L, [0,T]. Then for each A € C., the analytic function space integral E"A[F ]
exists and is given by the formula

EM\[F] = j

- ]exp{—i(vzhz,b)+i/\‘”2(vh,a)}d0'(v). (3.4)
12,00,

2A

Furthermore, the generalized analytic Feynman integral E*"fa[F] exists for all real
q + 0 and is given by the formula

. 1/2
anf, — L T T
Fanfa[F] Li‘h[o‘ﬂexp{ 2a (veh ,b)+1<q) (vh,a)}da(v). (3.5)
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PROOF. By (2.10), the Fubini theorem, Lemma 3.2 and (2.19), we have for all A > 0,

Eam[F] = J FA122(x, ) dy (x)
Ca,b[O,T]

= J , J exp [iA V2 (v, z(x, N du (x)do (v)
12 10,11, 10,71

(3.6)
:JLZ [0,T] JC [0 T]EXp{iﬁfl/z(Uh,XHdu(X)dO' )
a,bV a,blY,

:Jz[ ]QXD{—%(vzhz,b)+i2\*1/2(vh,a)7§dg(v)_
La,b 0,T

But (3.6) is an analytic function of A throughout C,, and is a continuous function of
Ain C, since o is a finite Borel measure. Thus equations (3.4) and (3.5) are established.
O

COROLLARY 3.4 [1]. In Theorem 3.3, ifa(t)=0,b(t)=t,andh(t)=1, thenL?l’b[O, T]=
L2[0,T] and the generalized analytic Feynman integral E™fa[F] is an ordinary analytic
Feynman integral and

Eanfq [F] — J
L2[0,T]

-
exp{—zlq . vz(s)ds}da(v). (3.7)

4. Conditional generalized analytic Feynman integrals. Throughout this section
we will condition by the function X : C,,[0,T] — R given by
X(A™V2x) =A™ Y22z(x,T) = A"Y2(h, x) 4.1)

for s-a.e. x on C, [0, T]. In Theorem 4.1, for F € S(Liyb[o, T1), we evaluate the condi-
tional generalized Feynman integral E&fa[F | X].

THEOREM 4.1. Let F € S(L2 ,[0,T]) be given by (3.1), let X be given by (4.1) with
heLs[0,T],andlet f(t) = f(f h?(s)db(s). Then the conditional function space integral
E"\[F | X] exists and is given by the formula

' 1 2’
EYA[F [ X1(n) :ILﬁh[O,T]eXp{Bt;’")(vhz’b)_Zz\<[v_(UB(T))] hz,b)

12 _(vhz,b)} )}
+1iA ([v 73@) h,a)vdo(v)

for all A € C,. Furthermore, the conditional generalized analytic Feynman integral
EaJa[F | X] exists for all real q # 0 and is given by the formula

E“Ma[F | X]( )—j in (vh? b)_i _(vh?b) 2h2h
e Li,b[o,ﬂexp gy U 2q\|Y " B ’

(1) (o )

4.2)

(4.3)
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PROOF. By the definition of S(Li,b[o, T1), we have that for all A > 0,

T
F(AY2z(x,)) = LZ o exp{ijo v(s)d()\‘”zz(x,s))}da(v) (4.4)
a,b™

for s-a.e. x € C4,[0,T]. Now using (2.14), (2.17), Lemma 3.2, the Fubini theorem, and
(2.19), we obtain the formula

EP™[F | X1(n)
=E[F(A™22(x,) [A72z(x,T)](n)

T
= EX[J , exp{ij v(s)d(?\“zz(x,s))}do () | AY2z(x,T) = n}
12,00,T] 0

T
- i ~172 _ B(s) B(s) )}
.[Ca,h[o,ﬂ JLéyh[O,T] exp{tJ(() v(s)d()\ (Z(X’S) B(T) 2(x, T)) B(T)n

-do (v)du (x)
= 2
_Li,b[o,ne {B(T)(”h b)}
Jca_h[one}m{l)‘ <[v B(T) h,x ) tdu(x)do(v)

+iA’1/2<[v - W]h,a)}da(v)

(4.5)

for all (A,n) € (0,%) x R. Hence, since o is a finite Borel measure on L2 b[O T1, the
last expression on the right-hand side of (4.5) is an analytic function of A throughout
C., and is a continuous function of A in C,. Thus, (4.2) and (4.3) are established. O

COROLLARY 4.2 [1]. In Theorem 4.1, if a(t) = 0, b(t) = t, and h(t) = 1, then the
conditional generalized analytic Feynman integral E**a[F | X] is an ordinary condi-
tional Feynman integral and

anf, _ in (" i i ?
EaMa[F | X](n)sz[O’T] exp{ T Jo v(s)ds 24 L v2(s)ds+ ZqT(J v(s)ds) }da(v).
(4.6)

In our next theorem we show that if we multiply E*"a[F | X](n) by (q/2miB(T))/?
~exp{(iq/2B(T))(n—(i/q)"?x(T))?}, the analytic extension of the Radon-Nykodym
derivative evaluated at A = —ig, and then integrate over R we obtain the generalized
analytic Feynman integral E4"/4[F] where «(T) = (h,a) is the mean of z(x,T). To do
so we need the following summation procedure. Let
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) o 2
J[Rf(n)dn=Allr+nmjkf(n)exp{—M}dn “4.7)

whenever the expression on the right-hand side exists. But if f € L' (R), it is clear by
the dominated convergence theorem that

J f(mdn =J S(mdn. (4.8)
R R

THEOREM 4.3. Let F € S(L2 ,[0,T]) be given by (3.1) and let X be given by (4.1)
with h € L,[0,T]. Then forall A € C,,

amre A\ AN =A"12&(T))* ) Lan
E A[F]—jk(%) exp{— BT ENF | X](mdn  (4.9)

and for all veal q + 0,

[ Y (ia(n- 2 4.10)
((a_ ia(n— (/@) 26(T))* ) oy (
Ju@(21TiB(T)) EXp{ 2B8(T) E4™a[F | X1(n)dn.

PROOF. We will obtain the formula (4.10). The proof of (4.9) is similar to (4.10)
but easier since the summation procedure is not needed. Let g = 0 be given. By using
(2.15), (2.19), (4.3), (4.7), the Fubini theorem, and (3.5), we obtain that

1/2 ; (4 1/2 2
_a ig(n— /@) (7)) Lany
J[R(zm'B(T)) eXp{ 28(T) }E 1[F|X1(n)dn

:Alirfloo Jm<m;13(n)l/zexp{iq(n— (;/[;a();;Za(T))z —;’;}
| [wamﬂ EXp{l;r})(”hzim—ziqu— “’Jﬁ?f’)]zhz,b)
+1i (;1)1/2 ([v — (vB}E;)b) ]h,a) } dO’(v)} dn

s _ oM i ([ (vhib)]?
A Lz,,b[o,ne"p{ 250 2L’ ) )

5) (o5 )

1/2 2 i1g)1/2 2 j(vh?
q ign®-2q(i/@)"*«(T)n n* i(vh? b)n
'(m;;m) [Jkexp{ 2B(T) 24" B(D) }d”}dg(v)
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= lim JLi,b[o,n ( 2ng(T) )UZ (5(1;?502)”2

oo~ Sgi2q (v~ 5t ] )

o\ 1/2
(i _(wh’,b)
H(fl) <[U B(T) ]h’“)
_ A(a(i/@)2a(T)~(vh?,b))°
2B(T)(B(T) - Aiq)

I e =

(i\'? (vh2,b)
“(q) ([V‘W]M)
i i\'"? , ’
- 32B@) (q (q) «(T)-(vh ,b)) }dU(v)

, o\ 1/2
i, 5.5 i
= -— h-,b - h, d
JL;},[O,T]EXD{ 2q(v )+l(q> (v a)} o)

= Eanfa[F] (4.11)

}da(v)

which concludes the proof of Theorem 4.3. O
5. The generalized integral equation. Throughout this section we will choose a(t),
the mean function of the generalized Brownian motion process Y, to be identically
equal to zero. Since a(t) = 0 on [0,T], we will denote L2 ,[0,T] by L;[0,T] and
Capl0,T] by Cp[0,T]. Let Y be the set of functions on [0, T] xR of the form
o(t,u) = J exp {iuv}dvi(v) (5.1)
R

where {v;:0 <t < T} is a family from M(R) with ||v¢|| € Lp[0,T], and for each B €
B(R), v¢(B) is a Borel measurable function of t. Let 6 € Y, let F be given by

T
F(x) = eXp{J 9(t,x(t))dt} (5.2)
0
for s-a.e. x € Cp[0,T]. Again it can be shown, as in [7], that the functions 0(t,u),

fOTQ(t,x(t))dt, and F(x) are Borel measurable and that IOT O(t,x(t))dt and F(x) are
elements of S(L3[0,T1]). Hence there exists o = or € M(L3[0,T]) such that

T
F(x) = J ) exp{ij v(t)dx(t)}da(v) (5.3)
13[0,T] 0

for s-a.e. x € Cp[0, T]. Furthermore, the functional G(x) =F(z(x,-)) withh € L.[0,T],
belongs to the Banach algebra S(Lf,[O, T [3].
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THEOREM 5.1. Let 0 €Y be given by (5.1), let F be given by (5.2), let X be given by
(4.1) with h € L.,[0,T], and for (n,A) € Rx (0, »), let

_ A e An? -1/2 -1/2
HT0A) = (5r805) exp{— ST }EX[F(A 2(6,) 1A 22 (x,) .
(5.4)

Then for (n,A) € R x (0,), the function H(T,n,A) satisfies the generalized integral
equation

H(T,n,A)

() oz}
=\ 2mpm P17 281

r A v An-2)°
s Lo (smgan) |- amin o
(5.5)

PROOF. Let (n,A) € R x (0,0) be given. By differentiating the function
exp{ [y 0(u,A"12z(x,u))du} with respect to s and then integrating the derivative on
[0,T], we obtain

T
exp{fo 9(5,?\_1/22()(,5))(15}

T (5.6)

=1+ L exp { JOS G(u,A1/22(x,u))du}9(5,/\”22(x,5)) ds.

Since the left-hand side of (5.6) is u-integrable, it follows that the second term of the
right-hand side of (5.6) is p-integrable. Hence taking conditional expectations, and
using (2.17), (2.19), and the Fubini theorem, we have

Ex[F(A™Y2z(x,) | A1 22(x,)](n)

T s
= 1+EX[J Q(S,Al/ZZ(X,S))eXp{J Q(u,/\l/zz(x,u))du}ds | A"V2z(x,T) = n}
0 0

T
=1 +EX[J0 9(5,2\”2 (z(x,s) —B(S)Z(X,T)> + B(s) )

B(T) B(T)"
-exp { JOS 0 <u,2\”2 (z(x,u) _Bw z(x, T)) + ‘B(u)n) du}ds}

B(T) B(T)
T
= 1+JO Ey [9<s,2\1/2 (z(x,s) _ BB z(x,T)) + Bs) n)

B(T) B(T)

- exp { J: 0 (u,A‘”Z (z(x,u) - l;((?)) z(x,s))

B(u) 1/2( _BG) ) B(s) ]) H
+ () [2\ z(x,S) B(T)Z(X'T) +B(T)n du g |ds.
(5.7)
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Observe that the random variable A~12(z(x,s) — B(s)z(x,T)/B(T)) + B(s)n/B(T) is
Gaussian with mean B(s)n/B(T) and variance o2 = A~L(B(s) — B2(s)/B(T)) for 0 <
s < T.Moreover, for 0 < u < s < T, the two Gaussian random variables A~1/2(z(x,s) —
B(s)z(x,T)/B(T)) and A~Y2(z(x,u) — B(u)z(x,s)/B(s)) are independent. By apply-
ing these facts and the change of variable theorem to the last expression in (5.7), we
have

Ex[F(A™Y2z(x, ) | A1 22(x,)](n)

B T s _ B(u) B(u)
=1 +J0 JREX[eXp{JO 9<u,2\ 1”(z(x,u) —B(S)Z(x,S)> +B(S)C) duH

2
-9(S,C)(2Tr02)*1/2exp{f (C-Bs)n/B(T)) }dCds

202

T s
=1+J J (2170'2)_1/20(5,C)Ex[exp{J G(u,A‘l/zz(x,u))du} | A‘l/zz(x,s)=§}
o Jr 0

2
_eXp{_ (T—B(s)n/B(T)) }dws_

202
(5.8)
But we observe that
A2 An? 2\ 172 (C-B(s)n/B(T))*
(mﬁ(r)) exp{_zﬁ(r }(2"‘7) P 202
(82 o 3} o) -5
A 2B(s) 21 (B(T) - B(s)) 2(B(T)-B()) )’
(5.9)

Hence by (5.8) and (5.9), we obtain

1/2
3 A An?
H(T.n.A) = (21TB(T)) exp{_ 23<T>}

T A 172 A2 e
+J0 L«Q(S’E)(znﬁ(n> exp{‘zﬁm}(““ )

2
_exp{_ (T—B(s)n/B(T)) }

202

-Ey [exp{ﬁj@(u,}\l/zz(x,u))du} | A"Y2z(x,8)=C ]dCds

(A 2 An?
_<27TB(T)) P T HR(T)

+ JOT I[R 0(s,0)H(s,C,A) (

A 1/2
BT FE))

A(n-10)?
'exp{_ 2(B(T)— B(s)) }dms'
(5.10)

which completes the proof of the theorem. O
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THEOREM 5.2. Let F and X be as in Theorem 5.1. Then the function

A\ An? ] pan
H(T,n,?\)=(m> exp{—ZB(T)}E \F 1 X1(n) (5.11)

satisfies the integral equation (5.5) for (n,A) € RxC,.

PROOF. Since H(T,n,A) given by (5.11) satisfies the integral equation for A > 0, it
suffices to show that both sides of (5.5) are analytic functions of A throughout C,. By
Theorem 4.1, H(T,n,A) exists and is analytic throughout C.. Hence it suffices to show
that the second term on the right-hand side of (5.5), denoted by h(A), is an analytic
function of A on C,.. First an application of the dominated convergence theorem shows
that h(A) is continuous on C,; an appropriate dominating function is obtained as in
the following argument and so will be omitted here. Let A be a triangular path in
C,. We need only show that [, h(A)dA = 0. If we can apply the Fubini theorem to
the integral on A x [0,T] X R, this will be clear by the Cauchy integral theorem. Let
D =sup{|A|:A € A} and E =inf{ReA:A € A}. Then

D\ 2 E 1/2 b 172
(E) (m(mn—gm)) ”Vf“(mm)

E E
exp{— 28(T) nz}lcrlexr){— 2B B (n—é)z}

is a dominating function integrable with respect to (s,,A) on [0, T] X R X A. O

(5.12)

THEOREM 5.3. Let F and X be as in Theorem 5.1. Then for (n,q) € R x (R —{0}),
the function

1/2 . 2
iy (1 qn anf,
H(T.n, M)_(Zm'B(T)> exp{zﬁ(T)}E LEI X ) (>-13)

satisfies the generalized integral equation

)= (4 VP L i’
H(T.n,~iq) = (Wsm) ‘“’X"{zw}

T a 1/27 -
+J (27‘(1’(3 B(s))) (O DH(, L, —iq) (5.14)

0 (T) -
. iq(n-70)?
exp{Z(B(T) -B(s)) }dgds.

PROOF. We note that the techniques used in Theorem 5.2 will not work here since
limy_._i; (|Al/Re A) = +oco. By Theorem 4.1, we have

Alim H(T,n,A) =H(T,n,—iq). (5.15)
lim_
Next let
G(s,T,A) = (*)meu CVH (s, C /\)exp{—w} (5.16)
e 21 (B(T) - B(s)) ' e 2(B(T)-B(s))
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for s € (0,T), € € R and A # 0 with Re A > 0. Since the integral equation (5.5) holds
for all A € C,, it suffices to show that

hm J J G(s,C, /\)dCdS—J I G(s,C,—iq)dCds. (5.17)
—
Using the dominated convergence theorem in steps 3, 4, and 6 below, we obtain the
equation

T §2
J J G(s,C,—iq)dCds = jo Alil:{lm [RG(S,C,—iq)exp{ }dCds

T

2
=J lim lim G(s,C, A)exp{ 15 }d@ds

0 A=+ JRA——iq

T CZ
:J lim lim JRG(s,g?\)exp{ }dCds

0 Amrodn (5.18)

' 9
=J lim lim J G(s,C,?\)exp{—zA}dCds

0 A-—igA—+c

A—-—iq

_ L lim J G(s, T, \)dC ds

- hmJ JRG(S,C,/\)dCdS.

A——ig Jo

In fact, we will find a function that dominates the function

2
L(s) = J G(s,C, A)exp{ 15 }dC (5.19)

for all A sufficiently large, for all A € C, sufficiently close to —iq, and thatis in L' [0, T]
as a function of s. In particular, we will find a dominating function that is independent
of A and dominates for all A # 0 such that ReA > 0 and |A| < Ay = 2|q| + 1. Also it
suffices to take the limit as A — —iq along a horizontal line since we know that the
limit in (5.17) exists.

By using the definitions of L(s) and G(s,C,A), and then (4.2), (5.1), (5.3), and (5.11),
we have

1) = (33 gy )1/2<2n2<s>)m

, An-2)?  Ag g
'JRURexp{l“C}dVS(“)]exp{‘ Z(B(T)—B(S)) T2B() ZA}

. E 2 1 210 ) 2}

Li[o,s]e {B( )( vh®,b)s - 2;\( he,b), + ZAB( )(Ul’l,b)s dog(v)dc
(5.20)

where o € M(L;[0,5]) and (vh?,b)s = [gv(w)h* (w) db(w).

Now we can apply the Fubini theorem to the integral in L(s). First carrying out the
integration with respect to €, we obtain
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A\ AAB(T) 1z
L(s) =
() (21TB(T)> (B(s)(B(T)fﬁ(s)HA?\B(T))
. _ 1 21,2 2 2
JRJLg[o,s]eXp{ A (Vhab) 27\3( 7 (VA% D) 5o
A AB(s)(B(T) = B(s)) '
(B(T)—B(s)) 2(AAB(T)+B(s)(B(T)-B(s)))
. R P I 1.V B
[+ sy 1)~ ey s }d‘fs(”)dvf(“)'
Now we claim that forall A > 0 and all A # 0 such thatRe A > 0 and |A| < Ag = 2|q|+1,
1/2 1/2
Ao Ao
|L(s)| < (217/3(1")) o] [lvsl] < (2773(T)> ol [[vsl]- (5.22)

Once this claim is established, the proof is complete because the expression on the
right-hand side of (5.22) is in L'[0, T'] as a function of s. To obtain the inequality (5.22)
we use the following results:
(i) ForallRe A > Oand A > 0, |AAB(T)/(B(s)(B(T)—-B(s)) +AAB(T))| <1 since

B(-) is a strictly increasing function with (0) =

(i) |exp{—(v2h%,b)s/(2AB(s)) + (Vh?,b)2/(2AB(s))}] < 1 since Re(—1/2AB(s)) <
0 and (vh?,b)? < B(s) (v?h?,b); by the Cauchy-Schwarz inequality.

(iii) Formula (5.22) will follow once we show that

exp{— An? _ AB(s)(B(T) - B(s))
2(B(T) ~B())  2(ANB(T) +B(s)(B(T) - B(s)))

2
ey o A
[LHB( )(vh D), B(T)—ﬁ(S)]} <1 (5.23)

for all appropriate values of the variables involved. To show (iii), it suffices to show
that the real part of the exponent is nonpositive. Recalling that A = p —iq and letting

L 2 -~ an 24
Y= ”Wf()‘”h b)s= B0 -B®)’ 624

we obtain that

A
Re{ AGEIGK
- AB(s) (B(T) - B(s)) 1 ALY ”
2(AAB(T) +B(s) (B(T) - B(s))) [“B( >(”h b), B(T)-B(s)
_AB(s)(B(T)—B(s))[APB(T)+B(T)(B(T)—B(s))]

2[(APB(T) +B()(B(T) = B(9)))* + (4aB(T))*]

.[y+ ApaB(T)n } pn?
(B(T)=B(s))[ApB(T)+B(s)(B(T)=b(s))] 2(B(T)—-B(s))

1 APpa?B(s)B2(T)+ApB(s)[ApB(T) +B(s)(B(T)-B(s))]° .
[(ApB(T)+B(5)(B(T)=B(5)))*+(AaB(T))* |[ApB(T)+B(5) (B(T)—B(s))]
(5.25)
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But for p > 0 and 0 < s < T, we see that

A3pg?B(s)B2(T) + ApB(s) [ApB(T) +B(s) (B(T) - B(s))]°
< [(ApB(T) +B(s) (B(T) = B(5)))* + (AaB(T))* |[ApB(T) + B(s) (B(T) = B(5))]

(5.26)
and hence
- A*pa?B(s)B*(T) + ApB(s) [ApB(T) + B(s) (B(T) ~B(s)) ]’ -0
[ (ApB(T) +B(5) (B(T) = B(5)))* + (AaB(D))* | [ApB(T) + B(s) (B(T) - B(5))]
(5.27)

Thus the expression on the left-hand side of (5.25) is non-positive which completes
the proof of Theorem 5.3. O

THEOREM 5.4. Let F and X be as in Theorem 5.1. Let @ be given by
W) = | exo tiun}dgw) (5.28)
for some ¢ € M(R), and let
G(x) =F)@(x(T)+n). (5.29)
Then for all real q + 0, we have that

[(T,n,q) = E%a[G]

i wh,p) |,
= oy b
Lg[o,n [EXP{ 2q ([v B(T) } " (5.30)

. ) 2
J exp<|iun l‘BZ(qT) (u+ (h ’b)> ]»dqb(u)}da(v).
R

B(T)

In addition, we have the alternative expression

_ 1/2 .
anf, _ anfy _ a lq(g_n)z
Eanfa[G] jRE [F | X](C n)(sz(T)) exp{zm) W(@)dT (5.31)

where

ELE | XI(G-m) = |

i(€-n) > _L _(th,b)}z , )
i[o,r]exp{ B(T) (vh®,b) 2q<[v B(T) h*,b|rdo(v).

(5.32)

PROOF. We will first obtain the expression (5.30). Proceeding as in the proof of
Theorem 4.3, and then using (5.28) and (4.2), we have that for all A > 0,
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EM[G] = JREX[F(A’I/Zz(x, NYA 2z, T)+n) | A72z(x, T) +n](C)
A 1/2 A(g_r’)Z
' (ZWB(T)) exp{_ 2pm) §4°

= J Ex[F(A™'2z(x,-)) | A7V2z(x, T) (T —n)
R

12 A(L-n)?
'W(C)(znﬁ(r)) exp{_ 28(T) }dﬁ

- Jue .[Lf,[o,T] exp{ i(ﬁ;(;?) (vh?,b) - % ([v B (vﬁpzil)b) ]th’b> }da(v)

A 1/2 AT —n)? '
(m) eXp{‘ 28(T) }JRGXP{lMC}dcl)(u)d;’.
(5.33)

We next use the Fubini theorem, and then carry out the integration with respect to €
and obtain the formula

EMIG] :J

L%’[O,T][exp{ ZA([v B(T) }hz’b }

, (5.34)
2
| exp1iun—ﬁg) (u+ (vh ’b)) }dqb(u)]do(v).
R

B(T)

But clearly the right-hand side of (5.34) is analytic in A on C, and continuous for A in
C., and hence E4"fa[(] exists and given by (5.30). To obtain equation (5.31), we use
(4.7), (5.32) and the Fubini theorem:

[ E“”f"[FlX](C—n)(q)l/Zexp fa(t-m* W (C)dcg
R 21ip(T) 2B(T)

1/2 ,
q ) exp{lq(c—n)z <

2mip(T) 2B(T)  2A

1/2 . 2
o q i ([ whibh) ], )}
‘Allrfm 12(0,T] LR(Z‘ITiE(T)) EXp{ Zq([v B(T) ] b

_ iC-n, > iq(C-m?* ¢*
exp{ 5(T) (vh,b)+723(T) 54

-I[Rexp{iu?;}dd)(u)dgda(v)
. i, wran T, )_ in 7;
_Allrfm Li[O,T][eXP{ 2q([v 30T) } h*,b 30T) (vhe,b) (5.35)
] ( a )1/2(27TAB(T)>”2
R \ 21TiB(T) B(T)-igA
{ 2 _ 2 2
_exp{ ian® _ Alan—((vh?,b) +B(T)u)]

2B(T)  2B(T)(B(T)—iqA) }dqb(u)}da(v)

A—+oo

= lim RE“"fq [F| X](Cn)( }w(C)dC
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I e e (e

_ _ B(T) (. (vh?,b) 2} ]
JRexp{lun 2a <u+ 3(T) ) dp(u) |do(v)

= EYJa[G]. m

REMARK 5.5. (i) For 0 € % given by (5.1), F given by (5.2), G given by (5.29), and
using Theorem 5.3 and (5.31) and proceeding as in the proof of [7, Theorem 7.1], we
observe that T'(T,n,q) is a solution of the generalized Schrodinger integral equation

1/27 : _ 2
I(T,n,q) = (L) RW(C)eXp{M}dC

2miB(T) 2B(T)
T 1/27 . )
1 _iqg(n-0)*
J, g —sn) R"“’C)r“'g’&”e"p{zw(n—ms))}d“&
(5.36)
(ii) We also note that (5.31) can rewritten as

where * denotes convolution and H(T,n,—qi) is given by (5.13).
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