ON THE DECOMPOSITION OF $x^d + a_e x^e + \cdots + a_1 x + a_0$

JAVIER GOMEZ-CALDERON

(Received 9 July 1998 and in revised form 28 March 1999)

ABSTRACT. Let *K* denote a field. A polynomial $f(x) \in K[x]$ is said to be decomposable over *K* if f(x) = g(h(x)) for some polynomials g(x) and $h(x) \in K[x]$ with $1 < \deg(h) < \deg(f)$. Otherwise f(x) is called indecomposable. If $f(x) = g(x^m)$ with m > 1, then f(x)is said to be trivially decomposable. In this paper, we show that $x^d + ax + b$ is indecomposable and that if *e* denotes the largest proper divisor of *d*, then $x^d + a_{d-e-1}x^{d-e-1} + \cdots + a_1x + a_0$ is either indecomposable or trivially decomposable. We also show that if $g_d(x, a)$ denotes the Dickson polynomial of degree *d* and parameter *a* and $g_d(x, a) = f(h(x))$, then $f(x) = g_t(x-c, a)$ and $h(x) = g_e(x, a) + c$

Keywords and phrases. Polynomials and fields.

2000 Mathematics Subject Classification. Primary 11T06.

Let *K* denote a field. A polynomial $f(x) \in K[x]$ is said to be *decomposable* over *K* if

$$f(x) = g(h(x)) \tag{1}$$

for some polynomials g(x) and $h(x) \in K[x]$ with $1 < \deg(h(x)) < \deg(f(x))$. Otherwise f(x) is called *indecomposable*.

EXAMPLES. (a) $f(x) = x^{mn}$, *m* and n > 1, is decomposable because f(x) = g(h(x)) where $h(x) = x^m + c$ and $g(x) = (x - c)^n$.

(b) $f(x) = x^p$, p a prime, is indecomposable because p does not have proper divisors.

(c) $f(x) = \sum_{i=0}^{n} a_i x^{mi}$ is decomposable because f(x) = g(h(x)) where $h(x) = x^m$ and $g(x) = \sum_{i=0}^{n} a_i x^i$.

Decompositions such as the one given in (c) are trivial and consequently we say that f(x) is *trivially decomposable* if $f(x) = g(x^m)$ for some polynomial g(x) with m > 1.

In this paper, we show that $x^d + ax + b$ is indecomposable and that if e denotes the largest proper divisor of d, then $x^d + a_{d-e-1}x^{d-e-1} + \cdots + a_1x + a_0$ is either indecomposable or trivially decomposable. We will also show that if $g_d(x,a)$ denotes the Dickson polynomial of degree d and parameter a and $g_d(x,a) = f(h(x))$, then $f(x) = g_t(x-c,a)$ and $h(x) = g_e(x,a) + c$. More precisely, we prove the following.

THEOREM 1. Let *K* be a field. Let *d* be a positive integer. If *K* has a positive characteristic *p*, assume that (d, p) = 1.

(a) $x^d + ax + b$, $a \neq 0$, is decomposable.

(b) If *e* denotes the largest proper divisor of *d*, then $x^d + a_{d-e-1}x^{d-e-1} + \cdots + a_1x + a_0$ is either indecomposable or trivially decomposable.

(c) If $x^d = f(h(x))$ for some polynomials f(x) and h(x) in K[x], then $f(x) = (x-c)^t$ and $h(x) = x^e + c$ for some $c \in K$ and d = et.

(d) If $g_d(x,a)$ denotes the Dickson polynomial of degree d and parameter a and $g_d(x,a) = f(h(x))$, then $f(x) = g_t(x-c,a)$ and $h(x) = g_e(x,a) + c$ for some $c \in K$.

The proof of the theorem need the following lemmas.

LEMMA 2. Let $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ denote a monic polynomial over a field K. If K has a positive characteristic p, assume that (p,d) = 1. Let the irreducible factorization of f(x) - f(y) be given by

$$f(x) - f(y) = \prod_{i=1}^{s} f_i(x, y)$$
 (2)

Let

$$f_i(x, y) = \sum_{j=0}^{n_i} g_{ij}(x, y)$$
(3)

be the homogeneous decomposition of $f_i(x, y)$ so that $n_i = \deg(f_i(x, y))$ and $g_{ij}(x, y)$ is homogeneous of degree j. Assume $a_{d-1} = a_{d-2} = \cdots = a_{d-r} = 0$ for some $r \ge 1$. Then,

$$g_{i,n_i-1}(x,y) = g_{i,n_i-2}(x,y) = \dots = g_{i,R_i}(x,y) = 0$$
 (4)

where

$$R_{i} = \begin{cases} n_{i} - r & \text{if } n_{i} \ge r_{i} \\ 0 & \text{if } n_{i} < r_{i} \end{cases}$$

$$\tag{5}$$

PROOF. Let e_i denote the second highest degree of $f_i(x, y)$ defined by

$$e_{i} = \begin{cases} \deg(f_{i}(x, y) - g_{i, n_{i}}(x, y)) & \text{if } f_{i}(x, y) \neq g_{i, n_{i}}(x, y) \\ -\infty & \text{if } f_{i}(x, y) = g_{i, n_{i}}(x, y) \end{cases}$$
(6)

Assume, without loss of generality, that $n_1 - e_1 \le n_2 - e_2 \le \cdots \le n_s - e_s$. Let *b* denote the largest integer *i* such that $N = n_1 - e_1 = n_2 - e_2 = \cdots = n_i - e_i$. Our goal is to show that N > r. So, assume that *N* is finite. Hence, $g_{i,e_i}(x, y) \ne 0$ for all $i, 1 \le i \le b$ and

$$a_{d-N}(x^{d-N} - y^{d-N}) = \sum_{i=1}^{b} g_{i,e_i}(x,y) \prod_{\substack{j=1\\j\neq i}}^{s} g_{j,n_j}(x,y)$$
(7)

On the other hand, we have

$$x^{d} - y^{d} = \prod_{i=1}^{s} g_{i,n_{i}}(x,y)$$
(8)

Therefore,

$$a_{d-N}\frac{x^{d-N}-y^{d-N}}{x^{d}-y^{d}} = \sum_{i=1}^{b} \frac{g_{i,e_{i}}(x,y)}{g_{i,n_{i}}(x,y)}$$
(9)

As (d, p) = 1, $x^d - y^d$ has no multiple divisors in the algebraic closure of K. So, the denominators in the right-hand side of the above formula are relatively prime to each other, and if the denominator and numerator of each summand have a common factor, it can be canceled out. Hence, the right-hand side of (9) does not vanish. Thus, $a_{d-N} \neq 0$ and consequently d-N < d-r. Therefore, N > r and the proof of the lemma is complete.

LEMMA 3. Let f(x) be a monic polynomial over a field K. If K has a positive characteristic p, assume that p does not divide the degree of f(x). Let N denote the number of linear factors of f(x) - f(y) over $\mathbf{\bar{K}}$, the algebraic closure of K. Then, there exists a constant b in K such that

$$f(x) = g((x+b)^N) \tag{10}$$

for some polynomial $g(x) \in K[x]$.

PROOF. Choose *b* in *F* such that $f(x-b) = F(x) = x^d + a_{d-2}x^{d-2} + \dots + a_1x + a_0$. Hence, by Lemma 2, all linear factors of F(x) - F(y) have the form $x - a_i y$ for i =1,2,...,N. Thus, $F(a_ix) = F(x)$ for all *i*, and consequently $F(a_ia_ix) = F(a_ix) = F(x)$ for all *i* and *j*. Therefore, a_1, a_2, \ldots, a_N form a multiplicative cyclic group of order N and $\prod_{i=1}^{N} (x - a_i x) = x^N - y^N$.

Now write

$$F(x) = f_0(x) + f_1(x)x^N + f_2(x)x^{2N} + \dots + f_m(x)x^{mN}$$
(11)

with $\deg(f_i(x)) < N$ for all *i*. This decomposition is clearly unique. Thus,

$$F(x) = f_0(x) + f_1(x)x^N + f_2(x)x^{2N} + \dots + f_m(x)x^{mN}$$

= $f_0(a_ix) + f_1(a_ix)(a_ix)^N + f_2(a_ix)(a_ix)^{2N} + \dots + f_m(a_ix)(a_ix)^{mN}$ (12)
= $f_0(a_ix) + f_1(a_ix)x^N + f_2(a_ix)x^{2N} + \dots + f_m(a_ix)x^{mN}$

for i = 1, 2, ..., N implies that $f_i(x) = c_i \in K$ for all $0 \le j \le m$. Therefore,

$$F(x) = \sum_{i=0}^{m} c_i x^{Ni} = g(x^N)$$
(13)

where $g(x) = \sum_{i=0}^{m} c_i x^i \in K[x]$. This completes the proof of the lemma.

LEMMA 4. Let *d* be a positive integer and assume that *K* contains a primitive *n*th root ζ of unity. Put

$$B_k = \zeta^k + \zeta^{-k}, \qquad C_k = \zeta^k - \zeta^{-k}.$$
(14)

Then for each $a \in K$ we have

(a) If d = 2n + 1 is odd

$$g_d(x,a) - g_d(y,a) = (x - y) \prod_{i=1}^n (x^2 - B_k x y + y^2 + aC_k^2)$$
(15)

(b) If d = 2n is even

$$g_d(x,a) - g_d(y,a) = (x^2 - y^2) \prod_{i=1}^{n-1} (x^2 - A_k x y + y^2 + aC_k^2)$$
(16)

Moreover for $a \neq 0$ *the quadratic factors are different from each other and are irreducible in* K[x, y]*.*

PROOF. See [1, page 46].

PROOF OF THE THEOREM. (a) Assume $x^d + ax + b = f(h(x))$ with $1 < \deg(h(x)) < d$ and $a \neq 0$. Let $\tilde{\mathbf{K}}$ denote the algebraic closure of *K*. Let the irreducible factorization of f(x) - f(y) over $\tilde{\mathbf{K}}$ be given by

$$f(x) - f(y) = (x - y) \prod_{i=1}^{m} G_i(x, y).$$
(17)

Then,

$$x^{d} + ax - y^{d} - ay = (h(x) - h(y)) \prod_{i=1}^{m} G_{i}(h(x), h(y)) = \prod_{i=1}^{r} f_{i}(x, y)$$
(18)

for some irreducible polynomials $f_i(x, y) \in \tilde{\mathbf{K}}[x, y]$ with $\deg(f_i(x, y)) \leq d - 2$ for $1 \leq i \leq r$. Hence, applying Lemma 2, each of the factors $f_i(x, y)$ has a second highest degree of $-\infty$. Therefore, considering only the highest degree terms in (18),

$$x^{d} - y^{d} = \prod_{i=1}^{r} f_{i}(x, y)$$
⁽¹⁹⁾

and consequently ax - ay = 0. Since this is clearly a contradiction, then h(x) has either degree 1 or d.

(b) Let *e* denotes the largest proper divisor of *d*. Assume that the polynomial $g_e(x) = x^d + a_{d-e-1}x^{d-e-1} + \cdots + a_1x + a_0$ is decomposable. So, $g_e(x) = f(h(x))$ for some $h(x) \in K[x]$ with $1 < \deg(h(x)) \le e$. Let the irreducible factorization of f(x) - f(y) over $\tilde{\mathbf{K}}$ be given by

$$f(x) - f(y) = (x - y) \prod_{i=1}^{r} f_i(x, y).$$
(20)

Then

$$g_e(x) - g_e(y) = (h(x) - h(y)) \prod_{i=1}^r f_i(h(x), h(y)).$$
(21)

Hence, by Lemma 2, h(x) - h(y) is homogeneous and consequently a factor of $x^d - y^d$. So, h(x) - h(y) is a product of homogeneous linear factors and, by Lemma 3, $h(x) = x^m + c$ for some $c \in K$. Thus, $g_e(x) = f(x^m + c) = f_2(x^m)$ where $f_2(x) = f(x+c)$. Therefore, $g_e(x)$ is either indecomposable or trivially decomposable.

780

(c) If $x^d = f(h(x))$ then, we did this before,

$$x^{d} - y^{d} = f(h(x)) - f(h(y))$$

= $(h(x) - h(y)) \prod_{i=1}^{m} G_{i}(h(x), h(y)) = \prod_{i=0}^{d-1} (x - \zeta^{i}y)$ (22)

for some *d*th primitive root of unity ζ in **K**. Thus, $h(x) = x^e + c$ for some $c \in K$ and $e \mid d$.

Therefore,

$$f(h(x)) - f(h(y)) = (x^{e})^{d/e} - (y^{e})^{d/e} = \prod_{j=1}^{d/e} (x^{e} - \zeta^{e_{j}} y^{e})$$

$$= \prod_{j=1}^{d/e} (h(x) - c - \zeta^{e_{j}} (h(y) - c))$$
(23)

and $f(x) = (x - c)^{d/e}$.

(d) Similar to (c) using Lemma 4.

ACKNOWLEDGEMENT. The author thanks the referee for his suggestions which improved the final version of the paper.

REFERENCES

 R. Lidl, G. L. Mullen, and G. Turnwald, *Dickson Polynomials*, Longman Scientific & Technical, Harlow, 1993. MR 94i:11097. Zbl 823.11070.

CALDERON: DEPARTMENT OF MATHEMATICS, NEW KENSINGTON CAMPUS, PENNSYLVANIA STATE UNIVERSITY, NEW KENSINGTON, PA, 15068, USA