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Abstract. Approach uniformities were introduced in Lowen and Windels (1998) as the
canonical generalization of both metric spaces and uniform spaces. This text presents in
this new context of “quantitative” uniform spaces, a reflective completion theory which
generalizes the well-known completions of metric and uniform spaces. This completion
behaves nicely with respect to initial structures and hyperspaces. Also, continuous exten-
sions of pseudo-metrics on uniform spaces and (real) compactification of approach spaces
can be interpreted in terms of this completion.
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1. Approach uniformities. Themotivation for the introduction of approach unifor-
mities (which is the subject of Lowen and Windels [6]) is twofold. On the one hand, the
category AP of approach spaces (see Lowen [3]) is not fit to handle uniform concepts.
Different results concerning completeness in the category AP imply that the theory
is essentially local. For instance, the space of continuous functions between metric
spaces, equipped with the pointwise distance, turns out to be complete. On the other
hand, AP seems not to be the right context for the quantification of uniform proper-
ties, such as completeness and total boundedness, whereas for topological concepts
everything works out quite well in AP. Therefore, it was natural to seek a new cate-
gory that combines the quantitative aspects of AP (or pMET) and qualitative uniform
concepts. To that end the concept of approach uniformities was introduced in [6].
For the reader’s convenience we briefly recall the main definitions and results. An

approach uniform space (X,Γ) is a set X together with an ideal Γ of functions from
X×X into [0,∞], satisfying the following conditions:
(AU1) ∀γ ∈ Γ , ∀x ∈X : γ(x,x)= 0.
(AU2) ∀ξ ∈ [0,∞]X×X : (∀ε > 0, ∀N <∞ : ∃γNε ∈ Γ s.t. ξ∧N ≤ γNε +ε)⇒ ξ ∈ Γ .
(AU3)∀γ ∈ Γ , ∀N <∞, ∃γN ∈ Γ s.t.∀x,y,z ∈X : γ(x,z)∧N ≤ γN(x,y)+γN(y,z).
(AU4) ∀γ ∈ Γ : γs ∈ Γ .
Equivalently, an approach uniform space can be described by means of a uniform

tower, i.e., a family of filters (Uε)ε∈R+ on X×X, such that
(UT1) ∀ε ∈R+, ∀U ∈Uε :∆X ⊂U .
(UT2) ∀ε ∈R+, ∀U ∈Uε :U−1 ∈Uε.
(UT3) ∀ε, ε′ ∈R+ :Uε ◦Uε′ ⊃Uε+ε′ .
(UT4) ∀ε ∈R+ :Uε =

⋃
α>εUα.

or equivalently, a family (Uε)ε∈R+ of semi-uniformities, satisfying (UT3) and (UT4).
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For example, if d is a pseudo-metric, then the collection Γ(d) := {γ | γ ≤ d} is an
approach uniformity. It is referred to as themetric approach uniformity induced by d.
If U is a uniformity, then the trivial tower (U)ε(U on every level ε), is a uniform

tower, defining an approach uniformity Γ(U), which is referred to as the uniform
approach uniformity induced by U. If (X,Γ) and (Y ,Ψ) are approach uniform spaces,
then a function f : (X,Γ)→ (Y ,Ψ) is called a uniform contraction if and only if ∀ψ ∈
Ψ :ψ◦(f ×f)∈ Γ .
The categoryAUnif of approach uniform spaces and uniform contractions is a topo-

logical category. It contains Unif both reflectively and coreflectively and pMET core-
flectively.
Approach uniformities establish a context for quantifying uniform concepts. In [5], a

measure of total boundedness (and precompactness), of completeness and of uniform
connectedness is presented.
For every approach uniformity (X,Γ) and for any x ∈X we can consider the set

A(x) := {γ(x,·) | γ ∈ Γ}⊂ [0,∞]X. (1.1)

The family (A(x))x∈X defines an ordinary approach structure on X, which we shall
call the underlying approach structure of Γ . This procedure yields a forgetful functor
A: AUnif → AP.
Also recall that in any approach space (X,(A(x))x∈X) and for any filter F on X and

any x ∈X, we denote

λF(x) := sup
ϕ∈A(x)

inf
F∈F

sup
y∈F

ϕ(y). (1.2)

2. Cauchy filters. Let X be a set, and let U ⊂X×X. Then we denote

θU :X×X �→ [0,∞] :


(x,y) � �→ 0 if(x,y)∈U,
(x,y) � �→ 1 if(x,y) ∉U.

(2.1)

Proposition 2.1. Let (X,Γ) be an approach uniform space, and let F be a filter on
X. Then the following are equivalent.
(1) F is Cauchy with respect to the uniform coreflection.
(2) ∀γ ∈ Γ , ∀ε > 0, ∃F ∈ F : θF×F +ε > γ.
Proof. F is Cauchy with respect to the uniform coreflection U0 if and only if

∀U ∈U0, ∃F ∈ F : F×F ⊂U
⇐⇒∀γ ∈ Γ , ∀ε > 0, ∃F ∈ F : F×F ⊂ {γ < ε}.
⇐⇒∀γ ∈ Γ , ∀ε > 0, ∃F ∈ F : θF×F +ε > γ.

(2.2)

A filter on (X,Γ) is called (Γ -)Cauchy if and only if it satisfies the conditions of the
previous proposition.

Definition 2.2. Two filters F and g on (X,Γ) are called equivalent if and only if
F∩g is Cauchy.
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In Lowen [3] Cauchy filters in approach spaces are introduced: a filter F onX is called
Cauchywith respect to the approach space (X,(A(x))x) if and only if infx∈X λF(x)= 0.
This definition yields a categorically nice completion theory in AP (see [3]).
We have the following relationship between AP-Cauchy filters and AUnif-Cauchy

filters.

Proposition 2.3. Let (X,Γ) be an approach uniform space, and let (X,A(Γ)) denote
its underlying approach space. For any filter F on X, we have

F is A(Γ)-Cauchy �⇒ F is Γ -Cauchy. (2.3)

Proof. F is A(Γ)-Cauchy if and only if infx∈X λF(x)= 0, i.e., if and only if

∀ε > 0, ∃x ∈X, ∀γ ∈ Γ , ∃F ∈ F, ∀y ∈ F : γ(x,y) < ε. (2.4)

Let γ ∈ Γ and ε > 0. Take γN ∈ Γ , γN symmetric, such that ∀x,y,z ∈X : γ(x,z)∧N ≤
γN(x,y)+γN(y,z) for some N > ε, and take x0 ∈ X and F ∈ F such that ∀y ∈ F :
γN(x0,y) < ε/2. Clearly, we have ∀y,z ∈ F :

γ
(
y,z

)∧N ≤ γN(y,x0
)+γN(x0,z

)≤ ε. (2.5)

Consequently,

∀γ ∈ Γ , ∀ε > 0, ∃F ∈ F, ∀x,y ∈ F : γ(x,y)≤ ε, (2.6)

which means that F is Γ -Cauchy.

Proposition 2.4. Let (X,Γ) be an approach uniformity, and let F be a Cauchy filter
on X. Then B := {{y | infx∈F γ(x,y) < α} | γ ∈ Γ , α > 0, F ∈ F} is a filterbasis for a
Cauchy filter M, coarser than F. Moreover, M is the coarsest Cauchy filter with that
property. Consequently, M and F are equivalent.

Proof. Let U0 denote the uniform coreflection of Γ . The proof becomes folklore,
if one observes that

B= {U(F) |U ∈U0, F ∈ F
}
. (2.7)

Definition 2.5. An approach uniformity (X,Γ) is called complete if and only if
every Γ -Cauchy filter converges (with respect to the underlying topology of the uniform
coreflection of Γ ).
Thus an approach uniformity is called complete if and only if its uniform coreflection

is complete.
By Proposition 2.3, we know that if (X,Γ) is AUnif-complete, then (X,A(Γ)) is AP-

complete. The converse need not be true.

Example 2.6. Let (E,‖·‖) be a non-reflexive Banach space. If E is equipped with
the initial AP-structure δ for the source

(
f : E �→R)f∈E ,‖f‖E ≤1, (2.8)

(where R is equipped with the usual distance), then E is complete in AP.
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However, if E is equipped with the initial AUnif-structure Γ for the source
(
f : E �→R)f∈E ,‖f‖E ≤1, (2.9)

(where R is equipped with the usual approach uniformity), then E is not complete in
AUnif.
Indeed, we know that ∀x ∈ E, ∀A⊂ E

δ(x,A)= sup
F∈2(E )

inf
y∈A

sup
f∈F

∣∣f(x)−f(y)∣∣, (2.10)

and therefore the metric coreflection dδ is given by ∀x,y ∈ E
dδ(x,y)= sup

F∈2(E )
sup
f∈F

∣∣f(x)−f(y)∣∣= ∥∥x−y∥∥. (2.11)

Since E is Banach, (E,δ) is complete.
By [6, Proposition 2.16] we know that the uniform coreflection U0 of Γ is initial for

the Unif-source
(
f : E �→R)f∈E ,‖f‖E ≤1, (2.12)

(where R is equipped with the usual uniformity). Let B := {x ∈ E | ‖x‖ ≤ 1}. Then
f(B) ⊂ [−1,1], which is totally bounded. Thus B is totally bounded. However, B is
not compact, since E is non-reflexive, hence B is not complete. Therefore (E,Γ) is not
complete.

3. Completion. By Proposition 2.4, it makes sense to define X̂ to be the set of all
minimal Cauchy filters on X.

Proposition 3.1. Let (X,Γ) be an approach uniformity. If γ ∈ Γ , define ∀M,N∈ X̂
γ̂
(
M,N

)
:= inf

F∈M∩N
sup
x,y∈F

γ(x,y). (3.1)

Then Γ̂ := 〈{γ̂ | γ ∈ Γ , γ symmetric}〉 is an approach uniformity on X̂.
Proof. The fact that Γ̂ is an ideal follows from the observation that ∀γ1,γ2 ∈ Γ :

γ̂1∨ γ̂2 ≤ γ̂1∨γ2.
(AU1) Let γ ∈ Γ and M ∈ X̂. Since M is Cauchy, we have that ∀ε > 0, ∃F ∈ M :

θF×F +ε ≥ γ. Therefore γ̂(M,M)= infF∈M supx,y∈F γ(x,y)= 0.
(AU2) This is obvious.
(AU3) Let γ ∈ Γ and N < ∞. Then there is some γN ∈ Γ such that ∀x,y,z ∈ X :

γ(x,z)∧N ≤ γN(x,y)+γN(y,z). We shall prove that ∀M,N,F ∈ X̂ : γ̂(M,N)∧N ≤
γ̂N(M,F)+ γ̂N(F,N). Let F1 ∈ F∩M and F2 ∈ F∩N. Then F := F1∪F2 ∈ M∩N. Since
F1∩F2 ≠∅, we have that

sup
x,y∈F

γ(x,y)∧N ≤ sup
x,z∈F1

γN(x,z)+ sup
z,y∈F2

γN(z,y), (3.2)

and therefore

inf
F∈M∩N

sup
x,y∈F

γ(x,y)∧N ≤ inf
F1∈F∩M

sup
x,z∈F1

γN(x,z)+ inf
F2∈F∩N

sup
z,y∈F2

γN(z,y). (3.3)

(AU4) This follows from the observation that ∀γ ∈ Γ : γ̂s = γ̂s .
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The approach uniformity (X̂, Γ̂) in the previous proposition is called the completion
of (X,Γ). We have the following obvious relationship between the completion of the
uniform coreflection, and the uniform coreflection of the completion.

Proposition 3.2. If (Uε)ε and (Ûε)ε are the towers of (X,Γ) and (X̂, Γ̂) respectively,
then (Û)0 coincides with the uniform completion Û0 of U0.

Proof. We see that
(
Û
)
0 =

〈{{γ̂ < α} | γ̂ ∈ Γ̂ ,α > 0}〉

= 〈{(M,N) | ∃F ∈M∩N, ∀a,b ∈ F : γ(a,b) < α}〉

= 〈{(M,N) | ∃F ∈M∩N : F×F ⊂ {γ <α}}〉

= Û0.

(3.4)

From now on we can write Û0 without ambiguity.
Before we move on, we check that completion behaves nicely with respect to bases.

An ideal basis D in [0,∞]X×X is called a basis for Γ , if D satisfies (AU1), (AU2), and
(AU4) and

Γ = 〈D〉 :=
{
ξ ∈ [0,∞]X×X | ∀ε > 0, ∀N <∞ : ∃γNε ∈D : ξ∧N ≤ γNε +ε

}
. (3.5)

Proposition 3.3. If 〈D〉 = Γ , then 〈{d̂ | d∈D}〉 = Γ̂ .
Proof. This is a direct consequence of the fact that ∀γ,ξ ∈ [0,∞]X×X, ∀ε > 0,

∀N <∞:
ξ∧N ≤ γ+ε �⇒ ξ̂∧N ≤ γ̂+ε. (3.6)

If x ∈X, then let Vx denote the neighbourhoodfilter of x with respect to the under-
lying topology of the uniform coreflection.

Proposition 3.4. Let (X,Γ) be an approach uniformity. Then

i : (X,Γ) �→ (X̂, Γ̂) x � �→ Vx (3.7)

is initial, and i(X) is dense in X̂. Moreover, if (X,Γ) is Hausdorff, then i is an embedding.

Proof. It is well-known (cf. [10]) that ∀x ∈ X : Vx is a minimal Cauchy filter, and
therefore i is well-defined; and also, that i(X) is dense in X̂.
In order to show that Γ is the initial structure, first notice that if γ∈Γ , then∀x,y∈X:

γ̂ ◦(i×i)(x,y)= γ̂(Vx,Vy
)= inf

F∈Vx∩Vy
sup
a,b∈F

γ(a,b). (3.8)

Let γ ∈ Γ be bounded. Let γ̃ ∈ Γ be such that ∀x,y,z,u ∈ X : γ(x,u) ≤ γ̃(x,y)+
γ̃(y,z)+ γ̃(z,u). We shall prove that
(1) γ ≤ γ̂ ◦(i×i).
(2) γ̂ ◦(i×i)≤ γ̃.
Proof of (1). Let x,y ∈X. Suppose γ̂ ◦(i×i)(x,y) <M ∈R+, then there is some

F ∈ Vx ∩ Vy such that ∀a,b ∈ F : γ(a,b) < M . Since {x,y} ⊂ F , this means that
γ(x,y) <M .
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Proof of (2). Let x,y ∈ X and ε > 0. Put F := {z ∈ X | γ̃(x,z) < ε/2 or γ̃(y,z) <
ε/2} ∈ Vx∩Vy . Let a,b ∈ F .
• If γ̃(x,a) < ε/2 and γ̃(x,b) < ε/2, then γ(a,b)≤ γ̃(a,x)+ γ̃(x,b) < ε.
• If γ̃(y,a) < ε/2 and γ̃(y,b) < ε/2, then also γ(a,b) < ε.
• If γ̃(x,a) < ε/2 and γ̃(y,b) < ε/2, then γ(a,b) ≤ γ̃(a,x)+ γ̃(x,y)+ γ̃(y,b) ≤

γ̃(x,y)+ε.
• If γ̃(x,b) < ε/2 and γ̃(y,a) < ε/2, then γ(a,b)≤ γ̃(x,y)+ε too.
In any case supa,b∈F γ(a,b) ≤ γ̃(x,y)+ ε, and thus γ̂ ◦ (i× i) ≤ γ̃ + ε, which by

arbitrariness of ε proves the claim.
If (X,Γ) is Hausdorff, then for all x ≠ y : Vx ≠ Vy and therefore i is an embedding.

Now we have to prove that a completion really is complete.

Proposition 3.5. Let (X,Γ) be an approach uniformity. Then (X̂, Γ̂) is a complete
approach uniform space.

Proof. This is a consequence of Proposition 3.2.

Proposition 3.6. Let (Y ,Ψ) be a Hausdorff complete approach uniformity. If f :
(X,Γ) → (Y ,Ψ) is a uniform contraction, then there is a unique uniform contraction
f̂ : (X̂, Γ̂)→ (Y ,Ψ) such that f̂ ◦i= f .

Proof. If (Uε)ε and (Vε)ε are the towers of Γ and Ψ respectively, then f : (X,U0)→
(X,V0) is uniformly continuous and (Y ,V0) is a Hausdorff complete uniform space. It
is well-known that there is a unique f̂ : (X̂,Û0)→ (Y ,V0) uniformly continuous such
that f̂ ◦ i = f . In fact we know that for all M ∈ X̂ : f̂ (M) = limf(VM |X). We shall
prove that f̂ is a uniform contraction. To that end, let ψ ∈ Ψ ; we shall show that
ψ◦(f̂ × f̂ )∈ Γ̂ .
Recall that if M is a Cauchy-filter, then

∀γ ∈ Γ , ∀α> 0, ∀F ∈M, ∃x ∈ F, ∃M ∈M∩Vx, ∀a,b ∈M : γ(a,b) < α. (3.9)

Let M,N ∈ X̂ and let ε > 0. We have that f(VM | X) → f̂ (M), i.e., f(VM | X) ⊃
N(f̂ (M)). Since

f
(
VM |X

)= 〈{{f(x) | γ̂(M,Vx
)
<α

} | γ ∈ Γ , α > 0}〉

N
(
f̂ (M)

)= 〈{{y |ψ(f̂ (M,y))< β} |ψ∈ Ψ , β > 0}〉, (3.10)

we find that

∀β > 0, ∀ψ∈ Ψ , ∃α1 > 0, ∃γ1 ∈ Γ , ∀x ∈X : γ1
(
M, Vx

)
<α1 �⇒ψ

(
f̂ (M),f (x)

)
< β.
(3.11)

Analogously we have that

∀β > 0, ∀ψ∈ Ψ , ∃α2 > 0, ∃γ2 ∈ Γ , ∀x ∈X : γ2
(
N,Vx

)
<α2 �⇒ψ

(
f̂ (N

)
,f (x)

)
< β.
(3.12)
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Let ψ̃∈ Ψ such that ∀x,y,z,u∈ Y :ψ(x,u)≤ ψ̃(x,y)+ψ̃(y,z)+ψ̃(z,u). Then we
obtain that there exist α> 0 and γ ∈ Γ such that for all x ∈X:

γ̂
(
M,Vx

)
<α �⇒ ψ̃(f̂ (M),f (x))< ε

2
, γ̂

(
N,Vx

)
<α �⇒ ψ̃(f̂ (N),f (x))< ε

2
.
(3.13)

From (3.9) we deduce that ∀F ∈M∩N:

∃x1 ∈ F : γ̂
(
M,Vx1

)
<α, ∃x2 ∈ F : γ̂

(
N,Vx2

)
<α, (3.14)

and thus

∃x1 ∈ F : ψ̃
(
f̂ (M),f (x1)

)
<
ε
2
, ∃x2 ∈ F : ψ̃

(
f̂ (N),f (x2)

)
<
ε
2
. (3.15)

Then

ψ
(
f̂ (M), f̂ (N)

)≤ ψ̃(f̂ (M),f (x1
))+ψ̃(f (x1

)
,f
(
x2
))+ψ̃(f (x2

)
, f̂ (N)

)

≤ ψ̃(f (x1
)
,f
(
x2
))+ε ≤ sup

a,b∈F
ψ̃
(
f(a),f (b)

)+ε. (3.16)

Thus

ψ◦(f̂ × f̂ )(M,N)≤ inf
F∈M∩N

sup
a,b∈F

ψ̃◦(f ×f)(a,b)+ε. (3.17)

Since ψ̃◦(f ×f)∈ Γ and by arbitrariness of ε, we conclude that ψ◦(f̂ × f̂ )∈ Γ̂ .
Let cAUnif denote the full subcategory of AUnif consisting of all complete Haus-

dorff approach uniformities.

Corollary 3.7. cAUnif is a reflective subcategory of AUnif.

4. Examples

4.1. Extensions of pseudo-metrics. Any collection D of pseudo-metrics that is
closed under the formation of finite suprema, is a basis for some approach uniformity
Γ . In that case, we call D a uniform gauge for Γ . We already noticed [Proposition 3.3]
that if D is a uniform gauge for Γ , then D̃ := {d̂ | d ∈ D} is a basis for Γ̂ . As a mat-
ter of fact, D̃ is a uniform gauge too. Moreover, D̃ consists of the unique uniformly
continuous extensions of the pseudo-metrics in D from X×X to X̂×X̂.

Proposition 4.1. Let (X,Γ) be an approach uniformity and let d∈ Γ be a pseudo-
metric. Then ∀M,N∈ X̂:

d̂(M,N)= sup
M∈M

sup
N∈N

d(M,N). (4.1)

Proof. Let M ∈ M, N ∈ N, F ∈ M∩N. Since N ∩ F ≠ ∅ and M ∩ F ≠ ∅ it is
apparent that

∀ε > 0, ∃p ∈N, ∃q ∈M : d(p,q)≤ sup
x,y∈F

d(x,y)+ε. (4.2)
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This is equivalent to the fact that

inf
p∈N

inf
q∈M

d(p,q)≤ sup
x,y∈F

d(x,y) (4.3)

and therefore we have that

sup
M∈M

sup
N∈N

inf
p∈N

inf
q∈M

d(p,q)≤ inf
F∈M∩N

supd(x,y). (4.4)

Conversely, let ε > 0 and choose M ∈ M and N ∈ N such that supx,y∈M d(x,y) <
ε/2 and supx,y∈N d(x,y) < ε/2. If F := M ∪N , then ∀x,y ∈ F, ∀p ∈ M, ∀q ∈ N :
d(x,y)≤ d(p,q)+ε since
• If (x,y)∈N×N or (x,y)∈M×M then this is trivial.
• If x ∈M and y ∈N , then

d(x,y)≤ d(x,p)+d(p,q)+d(q,y)≤ ε
2
+d(p,q)+ ε

2
. (4.5)

Thus

inf
F∈M∩N

sup
x,y∈F

d(x,y)≤ sup
M∈M

sup
N∈N

inf
p∈N

inf
q∈M

d(p,q). (4.6)

4.2. Metric and uniform approach uniformities. The categories pMET and Unif
also allow a nice completion theory (cf. [8] for metric spaces, [10] for uniform spaces).
As a matter of fact, the completion theory in AUnif generalizes these constructions.

Proposition 4.2. (a) Let (X,Γ) be ametric approach uniform space, Γ = Γ(d). Then
Γ̂ = Γ(d̂).
(b) Let (X,Γ) be a uniform approach uniform space, Γ = Γ(U). Then Γ̂ = Γ(Û).
Proof. Part (a) is a special case of Proposition 4.1. Part (b) is a direct consequence

of Proposition 3.2.

4.3. Initial structures. In this section, we show that, as in Unif, completion com-
mutes with the formation of subspaces and products.

Proposition 4.3. Let (fi :X → Yi)i∈I be an initial AUnif-source.
(1) The source of canonical extensions (f̂i : X̂ → Ŷi)i∈I is initial too.
(2) If ji : Yi→ Ŷi are the canonical injections and if

e :X �→
∏

i∈I
Ŷi : x � �→

(
ji ◦fi(x)

)
i∈I , (4.7)

then X̂  e(X).
Proof. The (categorical) proof (e.g., [9]) of the equivalent statements in Unif, can

be imitated.

Proposition 4.4. If Y is a subspace of X in AUnif, then Ŷ = clX̂(Y ).
Proof. Apply Proposition 4.3(2) to the embedding i : Y →X.
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Proposition 4.5.
∏̂
i∈I Yi =

∏
i∈I Ŷi.

Proof. Since the source of projections (pri :
∏
Yi → Yi)i∈I is initial, we have by

Proposition 4.3(2), that (closures with respect to
∏
Ŷi)

∏̂
Yi = e

(∏
Yi
)
=
∏
Yi =

∏
Ŷi. (4.8)

4.4. Hyperspaces. Let (X,d) be a metric space. In [6] it was shown that the hyper-
space CL(X) := {A⊂X |A closed} allows a natural approach uniformity generated by
the ∞p-metrics {dH |H ∈ 2(X)}, where ∀A,B ∈ CL(X):

dH(A,B) := sup
x∈H

∣∣d(x,A)−d(x,B)∣∣. (4.9)

Its uniform coreflection is theWijsman uniformity (see [1]). We shall show that CL(X̂)=
ĈL(X).

Lemma 4.6. Let X be a metric space. Then CL(X) is a dense subspace of CL(X̂) in
AUnif.

Proof. In [7, Theorem 1.5], it is shown that i : CL(X)→ CL(X̂) :A� clX̂ A is a dense
embedding in Unif. We only need to show that CL(X) carries the AUnif-subspace
structure with respect to this embedding. Let d denote the metric on X, and let d̂ be
the metric completion.
The initial approach uniformity for the singleton source i is generated by ∞p-

metrics of the form

dK ◦(i×i)(A,B)= sup
x∈K

∣∣d̂(x,clX̂(A)
)− d̂(x,clX̂(B)

)∣∣, (4.10)

where K is a finite subset of X̂. If K is a finite subset of X̂ and ε > 0, then there exists
a finite subset H ⊂ X such that ∀x ∈ K, ∃y ∈ H : d̂(x,y) < ε/2. Then dK ◦ (i× i) ≤
dH+ε. On the other hand, ∀K ∈ 2(X) : dK ≤ di(K) ◦(i×i).

Proposition 4.7. Let X be a metric space. Then CL(X̂)= ĈL(X).
Proof. First notice that if Y is complete, then its Wijsman uniformity (which is

the uniform coreflection of CL(Y)) is complete by [7, Theorem 1.5]. Hence CL(Y) is
complete in AUnif. Since CL(X) is a dense subspace of CL(X̂) (Lemma 4.6), we obtain
by Proposition 4.4 that ĈL(X) is the closure of CL(X) in ̂CL(X̂)= CL(X̂), i.e., ĈL(X)=
CL(X̂).

4.5. Compactification. The Čech-Stone compactification of a topological space can
be described in two essentially different ways: as a closed subspace of a product of
the unit interval [0,1] and as the underlying topology of the completion of the initial
uniformity for all continuous functions into [0,1] (cf. [2]).
On the analogy of the former description a compactification in AP was defined in [4]

(or [6]) as follows. (Suppose [0,1] is equipped with the usual, i.e., euclidean, approach
structure.) If (X,δ) is an approach space, then denote

K (X) := {f :X �→ [0,1] | f is a contraction}. (4.11)
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Suppose X′ := ∏
f∈K (X)[0,1] is equipped with the product distance δ′. Consider

e : (X,δ) → (X′,δ′) : x � (f (x))f∈K (X) and let β X := e(X) be equipped with the
subspace distance β δ. The space (β X,β δ) is called the compactification of (X,δ).
This construction generalizes the Čech-Stone compactification in Top.
The alternative description mentioned above can be generalized in the context

AUnif. (Henceforth, suppose [0, 1] is equipped with the usual, i.e., euclidean, approach
uniformity.)

Proposition 4.8. Let (X,δ) be a Hausdorff uniform approach space. If K (X) is
the initial approach uniformity for the source

(
f :X �→ [0,1])f∈K (X), (4.12)

and δ̂ is the underlying approach space of K̂ (X), then (X̂, δ̂)= (β X,β δ).
Proof. By definition, the source

(
f :
(
X,K (X)

)
�→ [0,1])f∈K (X). (4.13)

is initial. By Proposition 4.3(2) we obtain that (X̂, K̂ (X))  (e(X),Γ) where Γ is the
relativization of product approach uniformity on [0,1]K (X). Consequently (and using
[6, Proposition 4.1]),

(
X̂, δ̂

)= (X̂,A(K̂ (X))) (e(X),A(Γ))= (β X,β δ). (4.14)

Still on the analogy of the situation in Top and Unif, we have the following corollary.

Proposition 4.9. Let (X,δ) be a uniform approach space. Then (X,δ) is compact
if and only if (X,K (X)) is complete.

4.6. Realcompactification. If in the above definition of compactification inAP [0,1]
is replaced by R (equipped with the usual approach structure) and the stars are
dropped (in particular K(X) := {f : X → R | f is a contraction}), then the space
(βX,βδ) is a generalization of the well-known Hewitt-Nachbin realcompactification
in Top (cf. [2]).
Here too, we have an alternative description in terms of completion.

Proposition 4.10. let (X,δ) be a Hausdorff uniform approach space. If K(X) is
the initial approach uniformity for the source

(
f :X �→R)f∈K(X), (4.15)

and δ̂ is the underlying approach space of K̂(X), then (X̂, δ̂)= (βX,βδ).

Corollary 4.11. Let (X,δ) be a uniform approach space. Then (X,δ) is realcom-
pact if and only if (X,K(X)) is complete.
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Corollary 4.12. Every realcompact uniform approach space is completely uni-
formizable. Every realcompact uniform approach space is AP-complete.

Proof. If (X,δ) is realcompact, then K(X) is complete and induces δ. By
Proposition 2.3 we see that (X,δ) is AP-complete.
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