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Abstract. Magnetohydrodynamic (MHD) flow of blood has been studied under the influ-
ence of body acceleration. With the help of Laplace and finite Hankel transforms, an exact
solution is obtained for the unsteady flow of blood as an electrical conducting, incompress-
ible and elastico-viscous fluid in the presence of a magnetic field acting along the radius
of the pipe. Analytical expressions for axial velocity, fluid acceleration and flow rate has
been obtained.

Keywords and phrases. Blood flow, integral transforms, body acceleration, magnetic field.

2000 Mathematics Subject Classification. Primary 76Z05.

1. Introduction. In situations like travel in vehicles, aircraft, operating jackhammer
and sudden movements of body during sports activities, the human body experiences
external body acceleration. Prolonged exposure of a healthy human body to external
acceleration may cause serious health problem like headache, increase in pulse rate
and loss of vision on account of disturbances in blood flow Majhi and Nair [3].
It has been established that the biological systems in general are greatly affected

by the application of external magnetic field. So far, the theoretical studies dealing
with the influence of applied magnetic field on blood flow have received very little
attention Ramachandra Rao and Deshikachar [4].
Many researchers have studied blood flow in the artery by considering blood as

either Newtonian or non-Newtonian fluids, since blood is a suspension of red cells
in plasma; it behaves as a non-Newtonian fluid at low shear rate. Chaturani and
Palanisamy [1] studied pulsatile flow of blood through a rigid tube under the influence
of body acceleration as a Newtonian fluid. In the present work, we consider the un-
steady flow of blood as an elastico-viscous magnetohydrodynamic fluid in a circular
pipe. It is assumed that a magnetic field along the radius of the pipe is present, no
external electric field is imposed and magnetic Reynolds number is very small. The
main idea of our work is the mathematical study of these phenomena in order to ob-
tain analytical expression for the axial velocity, flow rate, fluid acceleration and shear
stress.

2. Mathematical formulation. Consider the motion of blood as an electrically con-
ducting, incompressible and non-Newtonian fluid in the presence of a magnetic field
acting along the radius of a circular pipe. We assume that the magnetic Reynolds
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number of the flow is taken to be small enough, so that the induced magnetic and
electric field can be neglected. We consider the flow as axially symmetric, pulsatile
and fully developed. The pressure gradient and body acceleration G are given by:

−∂p
∂z

=A0+A1 cos(ωt), t ≥ 0, (2.1)

G = a0 cos(ω1t+φ), t ≥ 0, (2.2)

where A0 is the steady-state part of the pressure gradient, A1 is the amplitude of
the oscillatory part, ω = 2πf and f is heart pulse frequency, a0 is the amplitude of
body acceleration, ω1 = 2πf1 and f1 is body acceleration frequency, φ is its phase
difference, z is the axial distance, and t is time.
Under the above mentioned assumption, the equation of motion for flow as dis-

cussed by Stephanie and Rowland [2] in cylindrical polar coordinates can be written
in the form:

ρ
∂u
∂t
=A0+A1 cosωt+a0 cos

(
ω1t+φ

)+(µ+µ1
∂
∂t

)(
∂2u
∂r 2

+ 1
r

∂
∂r

)
−σB20u, (2.3)

where u(r ,t) is velocity in the axial direction, ρ and µ are the density and viscosity
of blood, µ1 is the elastico-viscosity coefficient of the fluid, σ is the electrical conduc-
tivity, B0 is the external magnetic field and r is the radial coordinate.
Let us introduce the following dimensionless quantities:

u∗ = u
ωR

, r∗ = r
R
, t∗ = tω, A∗0 =

R
µω

A0,

A∗1 =
R
µω

A1, a∗0 =
R
µω

a0, z∗ = z
R
.

(2.4)

In terms of these variables, equation (2.3) [if dropping the stars] becomes

α2
∂u
∂t
=A0+A1 cos(t)+a0 cos(bt+φ)+

(
1+β

∂
∂t

)(
∂2u
∂r 2

+ 1
r
∂u
∂r

)
−H2u, (2.5)

where β = (ωµ1/Rµ) is dimensionless parameter governing elastico-viscosity of the
fluid. α= R(ωp/µ)1/2 is (Womersley parameter), H = B0R(σ/µ)1/2, is the (Hartmann
number), b = (ω1/ω) and R is the radius of the pipe.
We assume that at t < 0, only the pumping action of the heart is present and at

t = 0, the flow in the artery corresponds to the instantaneous pressure gradient, i.e.,
−∂p/∂z =A0+A1. As a result, the flow velocity at t = 0 is given by:

u(r ,0)= A0+A1
H2

(
1− I0(Hr)

I0(H)

)
, (2.6)

where I0 is a modified Bessel function of first kind of order zero, when H tends to
zero, we obtain the velocity of the classical Hagen-Pioseuille flow.

u(r ,0)= A0+A1
4

(1−r 2). (2.7)

The initial and boundary conditions for our problem are:

u(r ,0)= A0+A1
H2

(
1− I0(Hr)

I0(H)

)
, (2.8a)
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u(1, t)= 0, (2.8b)

u(0, t) is finite. (2.8c)

3. Required integral transforms. If f(r) satisfies Dirichlet conditions in closed
interval (0, 1) and if its finite Hankel transform Senddon [5, page 82] is defined to be:

f∗(λn)=
∫ 1
0
rf(r)J0

(
rλn

)
dr, (3.1)

where λn are the roots of the equation J0(r)= 0. Then at each point of the interval at
which f(r) is continuous:

f(r)= 2
∞∑

n=1
f∗(λn)

J0(rλn)
J21(λn)

, (3.2)

where the sum is taken over all positive roots of J0(r)= 0, J0 and J1 are Bessel function
of first kind.
The Laplace transform of any function is defined as:

f(s)=
∫∞
0
e−stf (t)dt, Rs > 0. (3.3)

4. Analysis. Employing the Laplace transforms (3.3) to equation (2.5) in the light
of (2.8a) we get:

α2su−α2u(r ,0)= A0
s
+ A1s
s2+1 +

a0(s cosφ−bsinφ)
s2+b2

+
(

∂2

∂r 2
+ 1
r

∂
∂r

)[
u+βsu−βu(r ,0)]−H2u,

(4.1)

where

u(r ,s)=
∫∞
0
e−stu(r ,t)dt. (4.2)

Now applying the finite Hankel transforms (3.1) to(4.1) and using (2.8b) we obtain:

u∗
(
λn,s

)= J1
(
λn
)

λn

{
A0

λ2n+H2

(
1
s
− 1
s+h

)

+ A1
(
λ2n+H2

)
(
λ2n+H2

)2+(α2+λ2nβ)2
[ −1
s+h

+ s
s2+1+

α2+λ2nβ(
λ2n+H2

)(
s2+1)

]

+ a0
(
λ2n+H2

)
cosφ(

λ2n+H2
)2+(α2+λ2β)b2

[
−1
s+h

+ s
s2+b2

+
(
α2+λ2nβ

)
b2(

s2b2
)(
λ2n+H2

)
]

− a0bsinφ
(
α2+λ2nβ

)2
(
λ2n+H2

)2+b2(α2+λ2nβ
)2
[
1

s+h −
s

s2+b2+
λ2n+H2(

s2+b2)(α2+λ2nβ)
]

+ A0+A1(
λ2n+H2

) 1
(s+h)

}
,

(4.3)

where

h= λ2n+H2

α2+λ2nβ
, (4.4)
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Now the Laplace and finite Hankel inversion of equation (4.3) gives the final solution as:

u(r ,t)= 2
∞∑

n=1

J0
(
λnr

)
λnJ1

(
λn
)
{

A0
λ2n+H2

+ A1
[(
λ2n+H2

)
cost+(α2+βλ2n

)
sint

]
(
λ2n+H2

)2+(α2+λ2β
)2

+ a0
[(
λ2n+H2

)
cos(bt+φ)+(α2+βλ2n

)
sin(bt+φ)

]
(
λ2n+H2

)2+b2
(
α2+βλ2n

)2
+e−ht

[
A0

λ2n+H2
+ A1

(
λ2n+H2

)
(
λ2n+H2

)2+(α2+βλ2n
)2 − A0+A1

λ2+H2

+ a0
[(
λ2n+H2

)
cosφ+(α2+λ2nβ

)
sinφ

]
(
λ2n+H2

)2+b2
(
α2+λ2nβ

)2
]}

.

(4.5)

When β and H tends to zero, then our solution given by (4.5) reduces to the case
considered by Chaturani and Palanisawy [1].
The expression for the flow rate Q can be written as:

Q= 2
∫ 1
0
rudr , (4.6)

then

Q(r ,t)= 4
∞∑

n=1

1

λ2n

{
A0

λ2n+H2
+ A1

[(
λ2n+H2

)
cost+(α2+βλ2n

)
sint

]
(
λ2+H2

)2+(α2+λ2β
)2

+ a0
[(
λ2+H2

)
cos(bt+φ)+(α2+βλ2n

)
sin(bt+φ)

]
(
λ2+H2

)2+b2
(
α2+βλ2n

)2
+e−ht

[
A0

λ2+H2
+ A1

(
λ2n+H2

)
(
λ2+H2

)2+(α2+βλ2n
)2 − A0+A1

λ2+H2

+ a0
[(
λ2n+H2

)
cosφ+(α2+λ2nβ

)
sinφ

]
(
λ2n+H2

)2+b2
(
α2+λ2nβ

)2
]}

.

(4.7)

Similarly the expression for fluid acceleration F can be obtained from:

F(r ,t)= ∂u
∂t

. (4.8)

Then we have

F(r ,t)= 2
∞∑

n=1

J0
(
λnr

)
λnJ1

(
λn
)
{

A0
λ2n+H2

− A1
[(
λ2n+H2

)
sint−(α2+βλ2n

)
cost

]
(
λ2n+H2

)2+(α2+λ2β
)2

− a0b
[(
λ2n+H2

)
sin(bt+φ)−(α2+βλ2n

)
cos(bt+φ)

]
(
λ2n+H2

)2+b2
(
α2+βλ2n

)2
− 1
h
e−ht

[
A0

λ2+H2
+ A1

(
λ2n+H2

)
(
λ2+H2

)2+(α2+βλ2n
)2 − A0+A1

λ2+H2

+ a0
[(
λ2n+H2

)
cosφ+(α2+λ2nβ

)
sinφ

]
(
λ2n+H2

)2+b2
(
α2+λ2nβ

)2
]}

.

(4.9)



MHD FLOW OF AN ELASTICO-VISCOUS FLUID . . . 799

References

[1] P. Chaturani and V. Palanisamy, Pulsatile flow of blood with periodic body acceleration, Int.
J. Eng. Sci. 29 (1991), no. 1, 113–121. Zbl 825.76983.

[2] S. A. Gilligan and R. S. Jones, Unsteady flow of an elastico-viscous fluid past a circular
cylinder, Z. Angew. Math. Phys. 21 (1970), 786–797. Zbl 217.24802.

[3] S. N. Majhi and V. R. Nair, Pulsatile flow of third grade fluids under body acceleration—
modeling blood flow, Int. J. Eng. Sci. 32 (1994), no. 5, 839–846. Zbl 925.76975.

[4] A. Ramachandra Rao and K. S. Deshikachar,MHD oscillatory flow of blood through channels
of variable cross section, Int. J. Eng. Sci. 24 (1986), 1615–1628. Zbl 625.76129.

[5] I. N. Sneddon, Fourier Transforms, McGraw-Hill Book Co., Inc., New York, Toronto, London,
1951. MR 13,29h. Zbl 038.26801.

El-Shehawey, Elbarbary, Afifi, and Elshahed: Department of Mathematics, Faculty
of Education, Ain Shams University, Roxy, Heliopolis, Cairo, Egypt

http://www.emis.de/cgi-bin/MATH-item?825.76983
http://www.emis.de/cgi-bin/MATH-item?217.24802
http://www.emis.de/cgi-bin/MATH-item?925.76975
http://www.emis.de/cgi-bin/MATH-item?625.76129
http://www.ams.org/mathscinet-getitem?mr=13:29h
http://www.emis.de/cgi-bin/MATH-item?038.26801

