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Abstract. Some results concerning hyperinvariant subspaces of some operators on locally
convex spaces are considered. Denseness of a class of operators which have a hyperinvari-
ant subspace in the algebra of locally bounded operators is proved.
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1. Introduction. Let X be a locally convex space over the complex field C. Each
system of seminorms P inducing its topology will be called a calibration. We denote by
�(X) the collection of all calibrations onX and byΛ(X) all continuous seminormswith
respect to the given topology. Let us denote by �(X) the set of all linear continuous
operators on X and by �(X) the set of compact operators on X, i.e., T ∈�(X) if there
exists a neighborhood U such that T(U) is a relatively compact set. We shall denote by
im(T) the range of T and by kerT the null space of T . For a given P ∈�(X), let P = {pα :
α∈∆}, where ∆ is some index set. Choose any α∈∆ and let Xα :=X/ker(pα) denote
the quotient space which is a normed space with respect to the norm ‖xα‖α = pα(x)
where xα = x+ker(pα). The completeness of Xα we denote by X̃α. It is well known
that for the dual spaces the following relation holds X′ =⋃{(X̃α)′, α∈∆} (Floret and
Wloka [2]). Let B be an absolutely convex and bounded set, then XB :=

⋃{nB, n∈N}
is a normed subspace in X with respect to the norm ‖x‖B := inf{λ > 0 : x ∈ λB}. It is
easy to see that for any pα ∈ P there is some λα ≥ 0 such that

pα(x)≤ λα‖x‖B, x ∈XB. (1.1)

A linear operator T on X is called nuclear if it can be written in the form

Tx =
∞∑
j=1

λjcj(x)aj, x ∈X, (1.2)

where (cj) is an equicontinuous sequence in X′, (aj) is a sequence contained in an
absolutely convex bounded set B in X, such that XB is complete and (λj) ∈ l1 (cf.
Litvinov [8]). It is easy to see that the family of nuclear operators is an ideal in �(X)
and that each nuclear operator is also compact. A linear operator T on X is called
locally bounded, or T ∈ �B(X), if there exists a neighborhood U such that T(U) is
bounded (see Uss [10]). Clearly, if X is a normed space, then �B(X)=�(X).
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For a given P ∈�(X) we denote by BP(X) the algebra of universally bounded oper-
ators on X, i.e., the collection of all linear operators T on X for which

pα(Tx)≤ Cpα(x), x ∈X, pα ∈ P, (1.3)

where C ≥ 0 is independent of pα ∈ P . The algebra BP(X) is a unital normed algebra
with respect to the norm

‖T‖P = sup
{
pα(Tx) : pα(x)≤ 1, x ∈X, pα ∈ P

}
. (1.4)

Lemma 1.1. Let X be a Hausdorff locally convex space and T ∈ �B(X), then there
exists a calibration P ′ ∈�(X) such that T ∈ BP ′(X).

Proof. Choose any calibration P ∈ �(X). Then there exists a neighborhood Uγ

such that T(Uγ) is bounded. Without loss of generality we may assume that Uγ is the
open semiball corresponding to the seminorm pγ ∈ P . For any pα ∈ P there is some
Cα ≥ 0 such that sup{pα(Tx) : x ∈ Uγ} ≤ Cα. Hence for x ∈ X for which pγ(x) < 1 it
follows pα(Tx)≤ Cα. Let us prove that

pα(Tx)≤ Cαpγ(x), pα ∈ P, x ∈X. (1.5)

Fix any pα ∈ P and assume first that Cα > 0. If for some z ∈ X there is pα(Tz) >
Cαpγ(z) then there exists µ > 0 such that pα(Tz) > µ > Cαpγ(z) and then for the
vector (Cα/µ)z we have a contradiction with the above implication. If Cα = 0 then
(1.5) holds with zero on both sides. Especially, we have pγ(Tx) ≤ Cγpγ(x), x ∈ X.
Let us define P ′ = {p′α : pα ∈ P}, where p′α(x) = max{pα(x), Cαpγ(x)}, x ∈ X. We
readily verify that P ′ is again a calibration. Now, we can for any p′α ∈ P ′ estimate

p′α(Tx)=max
{
pα(Tx), Cαpγ(Tx)

}≤ CαC0pγ(x)≤ C0p′α(x), (1.6)

where C0 =max{1,Cγ}. Hence T ∈ BP ′(X).

By invariant subspace of T ∈ �(X) we mean a closed subspace M ⊂ X with the
property T(M) ⊂ M . Likewise, M is hyperinvariant for T if it is invariant for every
operator B ∈�(X) that commutes with T .

2. Main results. We consider some instances of the existence of a hyperinvariant
subspace for some operators on locally convex spaces. We start with the following
result obtained by Ma in [9] as a generalization from normed spaces (Kim et al. [4]) to
locally convex spaces.

Theorem 2.1. Let X be a Hausdorff locally convex space, T ∈ �(X) and let K ∈
�(X) be such that the commutator TK −KT has rank at most one. Then T has a
nontrivial hyperinvariant subspace.

We consider two cases in which the operator has the above property. Denote N0 :=
N∪{0}.

Theorem 2.2. Let X be a complete Hausdorff barreled locally convex space and
T ∈�(X) an invertible operator, let a∈X, ϕ ∈X′ and P ∈�(X) be such that:
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(i) {Tna :n∈N0} ⊂ B, for some absolutely convex bounded set B in X for which XB

is complete,
(ii) there is some pγ ∈ P , such that (T ′)−nϕ ∈X′γ for all n∈N0,
(iii)

∑∞
n=0‖(T ′)−nϕ‖γ‖Tna‖B <∞.

Then there exists a nontrivial hyperinvariant subspace for T .

Proof. Since T is invertible, the adjoint operator T ′ is invertible, too. Define an
operator sequence as follows

Kn =
n∑
k=0

Tka⊗((T ′)−kϕ), n∈N. (2.1)

Let qMα be a member of a calibration inducing the topology τb on �(X) of the uni-
form convergence on bounded subsets of X, where M is a bounded set on X and qMα
corresponds to M and some pα ∈ P . Letm>n, m,n∈N, then we can estimate

qMα
(
Km−Kn

)= sup
x∈M

pα
(
Kmx−Knx

)≤ m∑
k=n+1

sup
x∈M

pα
[(
T ′
)−kϕ(x)Tka

]

≤
m∑
n+1

∥∥(T ′)−kϕ∥∥γ sup
x∈M

pγ(x)pα
(
Tka

)

≤ λα ·sup
x∈M

pγ(x)
m∑
n+1

∥∥(T ′)−kϕ∥∥γ∥∥Tka
∥∥
B

(2.2)

and by (iii), {Kn} is a τb-Cauchy sequence on �(X). Since X is barreled and complete,
�(X) is quasicomplete with respect to τb (Köthe [6]) and hence also sequentially com-
plete. Thus, the sequence {Kn} converges to some operator K ∈ �(X). Denote by JB
the injection map of XB into X and by πγ the natural map X �Xγ . Then K = JBK̂γπγ ,
where K̂γ can be written in the form

K̂γxγ =
∞∑
k=0

ψγ
k
(
xγ
)
ak, (2.3)

whereψγ
k(xγ)= ((T ′)−kϕ)(x) for xγ = x+ker(pγ) and ak = Tka, k∈N0. Taking into

account the above assumptions, the operator K̂γ acting between two normed spaces
is nuclear, and since JB and πγ are continuous, K is nuclear and then also compact [2].
It is not hard to verify that TK−KT = −a⊗T ′ϕ, thus, it has rank one and applying
Theorem 2.1, the proof is complete.

Corollary 2.3. Let X be a complete barreled Hausdorff locally convex space, T ∈
�(X) and C ∈�(X) an invertible operator such that C ∈ {T}′′ (in the second commu-
tant) and suppose that there exist a∈X, ϕ ∈X′ and P ∈�(X) such that:
(i) {Cna :n∈N0} ⊂ B for some absolutely convex bounded set B in X for which XB

is complete,
(ii) there is some pγ ∈ P , such that (C′)−nϕ ∈X′γ, for all n∈N0,
(iii)

∑∞
n=0‖(C′)−nϕ‖γ‖Cna‖B <∞.

Then T has a nontrivial hyperinvariant subspace.
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Proof. By the above theorem,C has a nontrivial hyperinvariant subspace and since
{T}′ ⊂ {C}′, the operator T has a nontrivial hyperinvariant subspace, too.
As in Kim et al. [5] we can prove for locally convex spaces the following theorem.

Theorem 2.4. Let X be a Hausdorff locally convex space and T ∈�(X) a nonscalar
operator. If T or T ′ has an eigenvector, then T has a nontrivial hyperinvariant subspace.

Proof. Let Tz = λz, z �= 0, and choose ϕ ∈ X′ such that (T −λI)′ϕ �= 0. Then
for K := z⊗ϕ we have TK−KT = z⊗(λI−T)′ϕ and by Theorem 2.1 the conclusion
follows. If T ′ has an eigenvector the proof is similar.

For a given T ∈ �(X), the number λ ∈ C is in the resolvent set of T , or λ ∈ &(T), if
and only if there exists (T−λI)−1 ∈�(X). The spectrum is the set σ(T)= C\&(T). As
in a normed space we can define the following main subsets of the spectrum: σp(T),
σc(T), and σr (T)—the point spectrum, the continuous, and the residual spectrum, re-
spectively, as follows (see Uss [10]): λ∈ σp(T) if and only if T −λI is not one-to-one,
λ ∈ σr (T) if and only if λ ∉ σp(T) and im(T −λI) �= X and λ ∈ σc(T) if and only
if λ ∉ (σp(T)∪σr (T)) and (T −λI)−1 is not continuous. When X is complete, then
σ(T)= σp(T)∪σr (T)∪σc(T) (see [10]).

Theorem 2.5. Let X be a complete Hausdorff locally convex space. Then the set
of all continuous linear operators which have a nontrivial hyperinvariant subspace is
τb-dense in �B(X).

Proof. We may assume that X is not normable since for normed spaces such a
result holds (see Kim et al. [5]). Choose any nonzero T ∈�B(X). Clearly, T �= µI, since
I ∉ �B(X). Let P = {pα : α ∈ ∆} be a calibration on X. As in the proof of Lemma 1.1
there is some pγ ∈ P such that for any pα ∈ P there is some Cα > 0 such that (1.5)
holds. By Uss [10], σ(T) �= ∅, so, we can choose some λ∈ σ(T). If λ∈ σp(T), then T
has, by Theorem 2.4, a hyperinvariant subspace. For λ ∉ σp(T)we still have two cases.
If λ ∈ σr (T), then im(T −λI) �= X and, by the Hahn-Banach theorem, there exists a
nontrivial ϕ ∈X′ such that ϕ((T −λI)x)= 0 for all x ∈X. Consequently, λ∈ σp(T ′)
and by Theorem 2.4, T has a nontrivial hyperinvariant subspace. Let λ∈ σc(T). Then
there exists a net (aδ)δ∈Γ such that (T −λI)aδ → 0 and aδ � 0. First, suppose that
λ �= 0 and prove that pγ(aδ)� 0. For any pα ∈ P we have

|λ|pα
(
aδ
)≤ pα

(
(λI−T)aδ

)+pα(Taδ)≤ pα
(
(λI−T)aδ

)+Cαpγ(aδ). (2.4)

If pγ(aδ)→ 0, then pα(aδ)→ 0 for all α ∈ ∆, hence aδ → 0 which is a contradiction.
So, we may assume that

pγ
(
aδ
)≥ 1, δ∈ Γ . (2.5)

Now, let λ = 0. If for some δ′ ∈ Γ : pγ(aδ′) = 0, then by (1.5), pα(Taδ′) = 0 for all
α ∈ ∆, and consequently Taδ′ = 0, which is a contradiction with λ ∉ σp(T). Thus,
pγ(aδ) �= 0 for all δ∈ Γ and we may again assume that (2.5) holds. Now, for each δ∈ Γ
by the Hahn-Banach theorem, there exists some ϕδ ∈X′ such that

ϕδ
(
aδ
)= pγ

(
aδ
)
,

∣∣ϕδ(x)
∣∣≤ pγ(x), x ∈X. (2.6)
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Any x ∈X can be written in the form

x = ϕδ(x)
pγ
(
aδ
)aδ+zδ, δ∈ Γ , (2.7)

where zδ ∈ ker(ϕδ). Define an operator net (Tδ)δ∈Γ as follows

Tδx := ϕδ(x)
pγ
(
aδ
)λaδ+Tzδ, x ∈X, δ∈ Γ . (2.8)

Let us take any pα ∈ P and any bounded set M on X which generate one of the semi-
norms qMα of a calibration defining the topology τb. Then we can estimate

qMα
(
Tδ−T

)= sup
x∈M

pα
((
Tδ−T

)
x
)≤ sup

x∈M

∣∣ϕδ(x)
∣∣

pγ(aδ)
pα
(
Taδ−λaδ

)
≤ sup

x∈M
pγ(x)pα

(
Taδ−λaδ

)
,

(2.9)

where the right-hand side tends to zero. So, the difference Tδ−T is τb-convergent to
zero and since λ∈ σp(Tδ), by Theorem 2.4 all operators Tδ have a nontrivial hyperin-
variant subspace.

In the sequel, we shall generalize another result from Kim et al. [3] to locally convex
spaces. In the proof, one needs some lemmas which we shall write down for such
spaces.
A linear operator T ∈�(X) is said to be bounded below if for any seminormp ∈Λ(X)

there is some q ∈Λ(X) such that

q(Tx)≥ p(x), x ∈X. (2.10)

Lemma 2.6. LetX be a complete Hausdorff locally convex space and T ∈�(X). Then
T is invertible in �(X) if and only if it is bounded below and im(T)=X.

Proof. If T is invertible then im(T)=X and T−1 is continuous, thus T is bounded
below. Conversely, let T be bounded below with dense range. Let us prove that im(T)
is closed. Take any convergent net (yδ)γ∈Γ ⊂ im(T), yδ → y and let yδ = Txδ, xδ ∈
X, δ∈ Γ . Then by (2.10) it follows that (xδ) is a Cauchy net and thus it is convergent
xδ → x. By continuity of T it follows that Txδ → Tx hence y ∈ im(T). The range is
closed and dense, hence im(T)=X.

In the vector space X̃ := X×X we define the topology τ̃ by the following system of
seminorms P̃ = {p̃}, where p̃(x̃)= p1(x1)+p2(x2), p1,p2 ∈ P for some P ∈�(X) and
x̃ = (x1,x2)∈ X̃. Let us denote by Λ(X̃) all continuous seminorms on X̃. It is easy to
see that X̃ is complete wheneverX is complete. Let us define (A⊕B)(x,y) := (Ax,By).

Lemma 2.7. Let X be a complete Hausdorff locally convex space and A1,A2 ∈�(X).
Then the operator Ã := A1 ⊕A2 is invertible in �(X̃) if and only if A1 and A2 are
invertible in �(X).

Proof. Let us suppose that Ai, i = 1,2, are invertible. Then it is easy to see that
for Ã the inverse operator is A−11 ⊕A−12 . Let Ã be invertible, then it is bounded below.
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For any p̃ ∈ Λ(X̃) there is some q̃ ∈ Λ(X̃) such that q̃(Ãx̃) ≥ p̃(x̃), x̃ ∈ X̃. Writing
p̃ = p1+p2 and q̃ = q1+q2, with p1,p2,q1,q2 ∈Λ(X) we have

q1
(
A1x1

)+q2(A2x2)≥ p1
(
x1
)+p2(x2), x̃ = (x1,x2)∈ X̃. (2.11)

Replacing x̃ once with (x,0) and then by (0,x) we obtain

q1
(
A1x

)≥ p1(x), q2
(
A2x

)≥ p2(x), x ∈X. (2.12)

Since p̃ is arbitrary so are p1 and p2 which means that A1 and A2 are bounded below.
By invertibility of Ã in �(X̃) there exists the operator (Ã′)−1 which is equal to (Ã−1)′

and it is continuous in the strong topology in �(X̃′) (see [2]), where Ã′ = A′1 ⊕A′2.
Thus, Ã′ is bounded below. In the same manner as above, A′1 and A

′
2 are then bounded

below and hence injective. By the relations im(Ai)= ker(A′i)⊥, i= 1,2 (Köthe [6]) the
operators A1 and A2 have dense range. By Lemma 2.6 both are invertible.

Lemma 2.8. Let X be a Hausdorff locally convex space, T ∈ �B(X) and {Kn} a
sequence of operators in BP(X) for some P ∈ �(X) and such that ‖Kn‖P → 0. Let
K0 ∈�(X) and

KnT = TKn+1 or Kn+1T = TKn, n= 0,1,2, . . . . (2.13)

Then T has a nontrivial hyperinvariant subspace.

The proof with the first assumption in (2.13) is made by Kramar [7], the proof with
the second one is similar. In the next lemma one needs the Riesz functional calculus
which can be generalized to locally convex spaces for operators of the form T =
αI+T1, where α∈ C and T1 is a locally bounded operator (see Uss [10]).

Lemma 2.9. Let X be a complete barreled Hausdorff locally convex space, T ∈�(X)
a nonscalar operator, K ∈�(X) a nonzero operator and f an analytic function on an
open neighborhood � of σ(K) and such that KT = Tf(K). Let f(0) = 0 and σp(T) =
σp(T ′)=∅. Then f maps σ(T) onto itself and for every integer k, the function fk has
no fixed point on σ(K) except zero and the following relations hold

fn(K)T = Tfn+1(K), KTn = Tnfn(K), n∈N. (2.14)

In the proof one may restrict to nonnormable case, then for K ∈ �(X) we have
{0} ⊂ σ(K) (see [10]). The proof is then similar to that one in normed space using
Lemma 2.7 and the following facts in locally convex setting:
(i) if λ �= 0 andK ∈�(X) then λ∈ σp(K) if and only if λ∈ σp(K′) (see Edwards [1]),
(ii) if K1 and K2 are locally bounded then K1⊕K2 is locally bounded too,
(iii) the Riesz functional calculus and spectralmapping theorem for locally bounded

operators (see Uss [10]).

Lemma 2.10. Let X be a complete barreled Hausdorff locally convex space, K, T , f ,
and � as in the previous lemma. Then σ(K) = {0} if either |f ′(0)| < 1 or |f ′(0)| > 1
and ker(K)= {0}.
The proof is the same as in normed case using the above-mentioned facts.
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Theorem 2.11. Let X be a complete barreled Hausdorff locally convex space,
T ∈�(X) a nonscalar and K ∈ �(X) a nonzero operator, f an analytic function on
an open neighborhood � of the spectrum σ(K) such that KT = Tf(K). Then T has a
nontrivial hyperinvariant subspace whether one of the following conditions holds
(i) |f ′(0)|< 1,
(ii) |f ′(0)|> 1 and σ(K)= {0},
(iii) |f ′(0)|> 1 and ker(K)= {0}.
Proof. As in normed case, wemay assume that f(0)=0 and thatσp(T)= σp(T ′)=

∅ (Theorem 2.4) and in all three cases by Lemma 2.10 it follows that σ(K)= {0}. Let
us treat the case |f ′(0)|< 1, then there are 0< c < 1 and δ > 0 such that |f(ζ)|< c|ζ|
for 0 < |ζ| < δ. Define a sequence of operators: K0 = K and Kn = fn(K0), n ∈ N. Let
us prove that for this sequence the assumptions of Lemma 2.8 are satisfied. Choose
ε ∈ (0,δ) and denote Sε = {λ, λ∈ C, |λ| = ε} then we may use the functional calculus
(see Uss [10]) in the following manner

Kn = 1
2πi

∫
Sε
fn(λ)(λI−K)−1dλ

= 1
2πi

∫
Sε

fn(λ)I
λ

dλ+ 1
2πi

∫
Sε

fn(λ)K(λI−K)−1
λ

dλ

= fn(0)I+ 1
2πi

∫
Sε

fn(λ)K(λI−K)−1
λ

dλ,

(2.15)

where fn(0)= 0. For a given P = {pα} ∈�(X) since K ∈�(X) there is some semiball
Uγ such that K(Uγ) is bounded and the set (λI−K)−1K(Uγ) is for λ∈ Sε bounded too.
Fix any pα ∈ P , let Cλ

γ,α = sup{pα((λI−K)−1Kx), x ∈ Uγ} and Cγ,α = sup{Cλ
γ,α, λ ∈

Sε}. Then as in the proof of Lemma 1.1 we have pα((λI−K)−1Kx)≤ Cγ,αpα(x), x ∈X.
If we define P ′ = {p′α}, where p′α =max{pα, Cγ,α ·pα} all operators (λI−K)−1K are
in BP ′(X) and

p′α
(
(λI−K)−1Kx)≤Mγp′α(x), x ∈X, λ∈ Sε (2.16)

with Mγ =max{1,Cγ,γ}. So, we can for each p′α ∈ P ′ and x ∈X estimate

p′α
(
Knx

)≤ sup
λ∈Sε

∣∣fn(λ)∣∣
|λ| ·sup

λ∈Sε
pα
(
K(λI−K)−1x)·ε ≤ εcnMγp′α(x). (2.17)

Hence ‖Kn‖P ′ ≤ cn ·Mγε and we have ‖Kn‖P ′ → 0. By Lemma 2.8 the operator T has a
nontrivial hyperinvariant subspace. In the case |f ′(0)| > 1 the proof is similar. First,
one can find a function h analytic on a neighborhood �1 of the origin such that
h(f(ζ))= ζ, ζ ∈�1. Then as above one can verify that all assumptions of Lemma 2.8
are satisfied for hn(K), n∈N and the conclusion follows.
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