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A GENERALIZED HANKEL CONVOLUTION ON ZEMANIAN SPACES
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Abstract. We define a new generalized Hankel convolution on the Zemanian distribution
spaces of slow growth.
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1. Introduction. Zemanian (see [17, 19]) investigated the Hankel integral transfor-
mation, defined by

hµ(φ)(y)=
∫∞
0
(xy)1/2Jµ(xy)φ(x)dx, y ∈ (0,∞), (1.1)

where Jµ represents the Bessel function of the first kind and of order µ, in spaces of
generalized functions. Throughout this paper, µ is greater than −1/2.
In [17], it was introduced the space Hµ constituted by all those complex valued and

smooth functions φ on (0,∞) such that

γµm,k(φ)= sup
x∈(0,∞)

∣∣∣∣xm
(
1
x
D
)k(

x−µ−1/2φ(x)
)∣∣∣∣<∞ (1.2)

for every m,k ∈ N. Hµ is endowed with the topology generated by the family
{γµm,k}m,k∈N of seminorms and, thus, Hµ is a Fréchet space. The space � of multi-
pliers of Hµ was characterized in [3] as follows. A smooth function f on (0,∞) is in �

if and only if, for every k ∈ N, there exists n ∈ N such that (1+x2)n((1/x)D)kf(x)
is a bounded function on (0,∞) (see [3, Thm. 2.3]). The Hankel transformation hµ is
an automorphism of Hµ (see [19, Thm. 5.4-1]). The dual space of Hµ is denoted by H′

µ

as usual. The Hankel transformation is defined on H′
µ as the transpose of the Hankel

transformation on Hµ . That is, for each f ∈ H′
µ , the Hankel transform h′µf of f is

given by

〈
h′µf ,φ

〉= 〈f ,hµφ〉, φ∈Hµ. (1.3)

Thus, h′µ is an automorphism of H′
µ when it is considered on H′

µ the weak
∗ or the

strong topology.
Zemanian [18] defined the spaces of functions Bµ,a, a∈ (0,∞) and Bµ as follows. Let

a∈ (0,∞). A smooth function φ on (0,∞) is in Bµ,a provided that φ∈Hµ and φ(x)=
0, x ∈ (a,∞). This space Bµ,a is equipped with the topology induced byHµ on it. Thus,
Bµ,a is a Fréchet space. Moreover, if 0< a < b, then Bµ,a is continuously contained in

http://ijmms.hindawi.com
http://www.hindawi.com


132 JORGE J. BETANCOR

Bµ,b. The union space Bµ = ∪a>0Bµ,a is endowed with the inductive topology. Bµ is a
dense subspace of Hµ . The dual space of Bµ is denoted by B′µ . In [18, Thm. 1], the
Hankel transform hµ(Bµ) of Bµ was characterized.
Haimo [12], Hirschman, Jr. [14], and Cholewinski [10] studied the convolution for a

variant of the Hankel transformation, which is closely connected to hµ . After straight-
forward manipulations in the convolution operators defined by the above mentioned
authors, a convolution for the transformation hµ can be obtained. Said convolution
operation is defined as follows. Let f and g be measurable functions on (0,∞). The
Hankel convolution f ∗g of f and g is given by

(
f ∗g)(x)=

∫∞
0
f(y)(τxg)(y)dy, (1.4)

where

(
τxg

)
(y)=

∫∞
0
g(z)Dµ

(
x,y,z

)
dz (1.5)

provided that the above integrals exist, and being

Dµ(x,y,z)

=
∫∞
0
t−µ−1/2(xt)1/2Jµ(xt)(yt)1/2Jµ(yt)(zt)1/2Jµ(zt)dt, x,y,z ∈ (0,∞). (1.6)

If xµ+1/2f and xµ+1/2g are in L1(0,∞), the space of absolutely integrable functions
on (0,∞), then xµ+1/2(f ∗g)∈ L1(0,∞) and the interchange formula

hµ
(
f ∗g)(x)= x−µ−1/2hµ(f)(x)hµ(g)(x), x ∈ (0,∞) (1.7)

holds.
The study of the Hankel convolution on distribution spaces was started by Sousa-

Pinto [11]. He defined the Hankel convolution of distributions of compact support on
(0,∞) for µ = 0. In the last years, the ∗ convolution was studied in different spaces
of generalized functions by Betancor and Marrero (see [4, 5, 6, 7, 15]), Betancor and
González [1], and Betancor and Rodríguez-Mesa (see [9, 8]).
The Hankel translation τx defines a continuous mapping from Hµ into itself for

every x ∈ (0,∞) (see [15, Prop. 2.1]). Then the Hankel convolution T ∗φ of T ∈ H′
µ

and φ∈Hµ can be defined by

(
T ∗φ)(x)= 〈T ,τxφ〉, x ∈ (0,∞). (1.8)

In [15, Prop. 3.5], it was proved that x−µ−1/2(T ∗φ)∈ � for every T ∈H′
µ and φ∈Hµ .

The subspace �′µ,∗ of H′
µ consisting of the convolution operators in Hµ was character-

ized in [15, Prop. 4.2] as follows. A functional T ∈H′
µ belongs to �′µ,∗ (i.e., T ∗φ∈Hµ

for every φ∈Hµ) if and only if x−µ−1/2h′µ(T) is in �. The convolution S∗T of S ∈H′
µ

and T ∈ �′µ,∗ is defined in [15].

Definition 1. Let S ∈H′
µ and T ∈ �′µ,∗. The ∗-convolution S∗T of S and T is the

element of H′
µ defined by

〈
S∗T ,φ〉= 〈S,T ∗φ〉, φ∈Hµ. (1.9)
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If S ∈H′
µ and T ∈ �′µ,∗, the following extension of the interchange formula (1.7):

h′µ(S∗T)(x)= x−µ−1/2h′µ(S)h′µ(T) (1.10)

holds.

In this paper, inspired in [13], we define the Hankel convolution in a subspace of
H′
µ×H′

µ that contains H′
µ×�′µ,∗. The new convolution generalizes the one defined in

[15, Def. 1].
Throughout this paper, C always denotes a suitable positive constant, which is not

necessarily the same in each occurrence.

2. The generalized Hankel convolution on H′
µ . Now, we are going to define a new

generalized Hankel convolution on H′
µ . Let S and T be in H′

µ . Assume that
(P.1) (S∗φ)(T ∗ψ)∈ L1(0,∞) for every φ,ψ∈Hµ ,
(P.2)

∫∞
0 τx(T∗φ)(y)(S∗ψ)(y)dy =

∫∞
0 (T∗φ)(y)τx(S∗ψ)(y)dy for everyφ,ψ∈

Hµ and x ∈ (0,∞).
When S and T satisfy properties (P.1) and (P.2), we say that the pair (S,T) has the

(P)-property for the sake of simplicity.
Fixing ψ∈Hµ , we define the linear mapping Fψ from Hµ into the space D′(0,∞) of

the distributions in (0,∞) by

Fψ(φ)=
(
S∗ψ)(T ∗φ), φ∈Hµ. (2.1)

Fψ is a continuous mapping when D′(0,∞) is endowed with the weak∗ topology. In-
deed, according to [15, Prop. 3.5], x−µ−1/2(S∗φ)∈ � and x−µ−1/2(T ∗φ)∈ � for each
φ∈Hµ . Also, x−µ−1/2(T ∗φn)→ 0, as n→∞, in � provided that φn→ 0, as n→∞, in
Hµ . Hence, if φn → 0, as n→∞, in Hµ , then Fψ(φn)→ 0, as n→∞, in D′(0,∞). Then
we conclude that Fψ is continuous.
Therefore, since (S,T) satisfies (P.1), [16, Thm. 2] implies that Fψ is a continuous

mapping from Hµ into L1(0,∞).
In other words, we have seen that the bilinear mapping

L :Hµ×Hµ �→ L1(0,∞) (2.2)

defined by

L
(
φ,ψ

)= (S∗ψ)(T ∗φ), ψ,φ∈Hµ (2.3)

is separately continuous. Then, sinceHµ is a Fréchet space, the bilinear form�, defined
on Hµ×Hµ by

�
(
φ,ψ

)=
∫∞
0

(
S∗ψ)(x)(T ∗φ)(x)dx, ψ, φ∈Hµ (2.4)

is continuous.
Now, we introduce the linear mapping L from Hµ into H′

µ as follows. For every
ψ∈Hµ , L(ψ) denotes the element of H′

µ defined by

〈
L(ψ),φ

〉=�
(
ψ,φ

)
, φ∈Hµ. (2.5)
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From [5, Lem. 2.2] and by taking into account that (S,T) satisfies (P.2), we have

L
(
τyψ

)= τy(Lψ), ψ∈Hµ. (2.6)

Hence, according to [7, Prop. 1], there exists a unique R ∈H′
µ such that

L(ψ)= R∗ψ, ψ∈Hµ. (2.7)

Definition 2. Let S and T ∈H′
µ such that the pair (S,T) satisfies the (P)-property.

We define the Hankel convolution S#T of S and T as the unique element of H′
µ satis-

fying

〈
(S#T)∗ψ,φ〉=

∫∞
0

(
S∗ψ)(x)(T ∗φ)(x)dx, ψ, φ∈Hµ. (2.8)

Now, we show that Definition 2 applies to a wide class of generalized functions in
H′
µ . Let m ∈ Z. We consider the space Ym that consists of all those complex valued

and smooth functions f on (0,∞) such that

sup
x∈(0,∞)

(
1+x2)mx−µ−1/2|f(x)|<∞. (2.9)

According to [15, proof of Prop. 3.5], if T ∈ H′
µ , then there exists m ∈ Z for which

T∗φ∈ Ym, for eachφ∈Hµ . We say that a functional T ∈H′
µ is inYm when T∗φ∈ Ym

for every φ∈Hµ .

Proposition 2.1. Let S ∈ Yk and T ∈ Ym. Then (S,T) has the (P)-property pro-
vided thatm+k < µ+1.

Proof. Let φ, ψ∈Hµ . It is easy to see that

(
S∗ψ)(T ∗φ)∈ L1(0,∞). (2.10)

Let x ∈ (0,∞). We can write ([14, (2), p. 308])

τx
(
T ∗φ)(y)=

∫ x+y
|x−y|

Dµ(x,y,z)(T ∗φ)(z)dz, y ∈ (0,∞). (2.11)

Moreover, since S ∈Yk and T ∈Ym, by taking into account [14, (2), p. 310], it follows
that
∫∞
0

∣∣(S∗ψ)(y)∣∣
∫ x+y
|x−y|

Dµ(x,y,z)
∣∣(T ∗φ)(z)∣∣dzdy

≤ C
∫∞
0
yµ+1/2

(
1+y2

)−k∫ x+y
|x−y|

Dµ(x,y,z)zµ+1/2
(
1+z2

)−m
dzdy

≤ Cxµ+1/2
∫∞
0

(
1+y2

)−m−k
y2µ+1dy <∞.

(2.12)

Hence, Fubini theorem leads to
∫∞
0
(S∗ψ)(y)τx(T ∗φ)(y)dy =

∫∞
0
τx(S∗ψ)(y)(T ∗φ)(y)dy. (2.13)

Thus, we conclude that the pair (S,T) has the (P)-property.
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In particular, from Proposition 2.1, we can immediately deduce the following.

Corollary 2.2. If S ∈H′
µ and T ∈ �′µ,∗, then (S,T) has the (P)-property.

Proof. According to [15, Prop. 4.3], T ∗ψ ∈Hµ , for every φ∈Hµ . Hence, T ∈ Ym
for every m ∈ Z and, from Proposition 2.1, we infer that (S,T) has the (P)-property.

Now, we establish that the convolution ∗ defined by Definition 1 on H′
µ×�′µ,∗ (see

[15]) is a special case of the convolution # given in Definition 2.

Proposition 2.3. Let S ∈H′
µ and T ∈ �′µ,∗. Then S∗T = S#T .

Proof. By Corollary 2.2, the pair (S,T) has the (P)-property. Moreover, by invok-
ing [15, Props. 3.5 and 4.3], we can write

〈
(S∗T)∗ψ,φ〉= 〈S∗T ,ψ∗φ〉= 〈S,T ∗(ψ∗φ)〉

= 〈S,(T ∗φ)∗ψ〉= 〈S∗ψ,T ∗φ〉

=
∫∞
0

(
S∗ψ)(x)(T ∗φ)(x)dx, ψ,φ∈Hµ.

(2.14)

Thus, we conclude that S∗T = S#T .
Next, some algebraic properties of the #-convolution are proved.

Proposition 2.4. Let S,T ∈ H′
µ and R ∈ �′µ,∗. Assume that (S,T) satisfies the

(P)-property. Then
(i) S#T = T#S.
(ii) (S#T)#R = S#(T#R).
(iii) T#δµ = T , where δµ represents the element of H′

µ defined by

〈
δµ,φ

〉= 2µΓ(µ+1) lim
x→0+

x−µ−1/2φ(x), φ∈Hµ. (2.15)

(iv) Sµ(S#T)= (SµS)#T = S#(SµT), where Sµ denotes the Bessel operator x−µ−1/2D×
x2µ+1Dx−µ−1/2.

Proof. (i) It is clear that (T ,S) has the (P)-property. Moreover, according to [15,
Prop. 3.5], for every ψ,φ∈Hµ ,

〈
(S#T)∗ψ,φ〉= 〈S#T ,ψ∗φ〉= 〈(S#T)∗φ,ψ〉

=
∫∞
0

(
S∗φ)(x)(T ∗ψ)(x)dx. (2.16)

Hence, S#T = T#S.
(ii) By virtue of Proposition 2.3, the pair (S#T ,R) satisfies the (P)-property and

(S#T)#R = (S#T)∗R. Moreover, (S,T∗R) has the (P)-property. Indeed, letψ,φ∈Hµ .
According to [15, Props. 4.3 and 4.7(i)], since (S,T) satisfies the (P)-property, we have

(
S∗ψ)((T ∗R)∗φ)= (S∗ψ)(T ∗(R∗φ))∈ L1(0,∞), (2.17)
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and
∫∞
0
τx
(
(T ∗R)∗φ)(y)(S∗ψ)(y)dy

=
∫∞
0
τx
(
T ∗(R∗φ))(y)(S∗ψ)(y)dy

=
∫∞
0

(
T ∗(R∗φ))(y)τx(S∗ψ)(y)dy

=
∫∞
0

(
(T∗R)∗φ)(y)τx(S∗ψ)(y)dy, x ∈(0,∞).

(2.18)

Also, we can write by [15, Props. 3.5 and 4.7(i)], for each φ,ψ∈Hµ ,
〈(
(S#T)∗R)∗ψ,φ〉= 〈(S#T)∗(R∗ψ),φ〉

= 〈S#T ,(R∗ψ)∗φ〉
= 〈(S#T)∗ψ,R∗φ〉

=
∫∞
0
(S∗ψ)(x)(T ∗(R∗φ))(x)dx

=
∫∞
0
(S∗ψ)(x)((T ∗R)∗φ)(x)dx.

(2.19)

Thus, we conclude that (S#T)∗R = S#(T ∗R).
(iii) It is immediately deduced from [15, Prop. 4.7(iv)] and Proposition 2.3.
(iv) Since (S,T) has the (P)-property, (SµS,T) and (S,SµT) also satisfy the same

property. Indeed, let ψ,φ ∈ Hµ . Then, since the Bessel operator Sµ is a continuous
operator from Hµ into itself [19, Lem. 5.3-3], by [15, Prop. 4.7(iii)],

(
(SµS)∗ψ

)
(T ∗φ)= (S∗(Sµψ))(T ∗φ)∈ L1(0,∞),

and

∫∞
0
τx(T ∗φ)(y)

(
(SµS)∗ψ

)
(y)dy

=
∫∞
0
τx(T ∗φ)(y)

(
S∗(Sµψ)

)
(y)dy

=
∫∞
0
(T ∗φ)(y)τx

(
S∗(Sµψ)

)
(y)dy

=
∫∞
0
(T ∗φ)(y)τx

(
(SµS)∗ψ

)
(y)dy, x ∈ (0,∞).

(2.20)

Moreover, by [15, Prop. 2.2(ii)], we get
〈
Sµ(S#T)∗ψ,φ

〉= 〈Sµ(S#T),ψ∗φ〉= 〈S#T ,(Sµψ)∗φ〉

=
∫∞
0

(
S∗(Sµψ)

)
(x)(T ∗φ)(x)dx

=
∫∞
0

(
(SµS)∗ψ

)
(x)(T ∗φ)(x)dx, ψ,φ∈Hµ.

(2.21)

Hence, Sµ(S#T)= (SµS)#T .
To complete the proof of (iv), it is sufficient to take into account (i).
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Our next objective is to prove an interchange formula that relates the Hankel trans-
formation h′µ to the #-convolution.
First, we need to define the product T ·S of T and S belonging to H′

µ .
As in [4], we say that a sequence {kn}n∈N ⊂ Bµ is a Hankel approximated identity

when the following three conditions hold for every n∈N :
(i) kn(x)≥ 0, x ∈ (0,∞);
(ii) kn(x)= 0, x �∈ ((1/n+1),(1/n));
(iii)

∫ 1/n
0 kn(x)xµ+1/2dx = 2µΓ(µ+1).

Three useful properties of the Hankel approximated identities follow.

Proposition 2.5 ([2, Prop. 1] and [6, proof of Prop. 2.4, p. 1148]). Let {kn}n∈N be
a Hankel approximated identity. Then, we have

(i) For every a> 0, y−µ−1/2hµ(kn)(y)→ 1, as n→∞, uniformly in (0,a), and there
exists M > 0 such that |y−µ−1/2hµ(kn)(y)| ≤M , n∈N and y ∈ (0,∞).
(ii) For every φ∈Hµ , kn∗φ→φ, as n→∞, in Hµ .
(iii) For every T ∈H′

µ , T ∗kn→ T , as n→∞, in the strong topology of H′
µ .

Let T and S be inH′
µ . We say that R ∈ B′µ is the product x−µ−1/2T ·S and we write R =

x−µ−1/2T ·S if for every Hankel approximated identity {kn}n∈N, x−µ−1/2(T∗kn)S → R
and x−µ−1/2(S∗kn)T → R, as n→∞, in the weak* topology of B′µ .
Note that if T , S ∈ H′

µ and there exists the product x−µ−1/2T ·S of T and S, then
also there exists the product x−µ−1/2S ·T of S and T , and x−µ−1/2T ·S = x−µ−1/2S ·T .
Moreover, if T ∈Hµ and S ∈H′

µ , then

〈
x−µ−1/2T ·S,φ〉= 〈S,x−µ−1/2Tφ〉, φ∈ Bµ. (2.22)

Indeed, let {kn}n∈N be a Hankel approximated identity. Then we have, by Proposition
2.5(ii) and (iii),
〈
x−µ−1/2(T ∗kn)S,φ

〉= 〈S,x−µ−1/2(T ∗kn)φ〉 �→ 〈S,x−µ−1/2Tφ〉, as n �→∞,
〈
x−µ−1/2(S∗kn)T ,φ

〉= 〈S∗kn,x−µ−1/2Tφ〉 �→ 〈S,x−µ−1/2Tφ〉, as n �→∞,
(2.23)

for every φ∈ Bµ .
Hence, the product that we have defined between two elements of H′

µ extends the
usual product of a function in Hµ by a distribution in H′

µ .

Proposition 2.6 (The interchange formula). Let S,T ∈ H′
µ . Assume that the pair

(S,T) has the (P)-property. Then, we have

h′µ(S#T)= x−µ−1/2h′µ(S)·h′µ(T). (2.24)

Proof. We only have to prove that, for every φ∈ Bµ ,
〈
x−µ−1/2(h′µ(S)∗kn)h′µ(T),φ

〉
�→ 〈h′µ(S#T),φ〉, as n �→∞, (2.25)

where {kn}n∈N is a Hankel approximated identity.
Let φ ∈ Bµ and let {kn}n∈N be a Hankel approximated identity. There exists a > 0

such that φ ∈ Bµ,a. Choose b > a and χ ∈ Bµ such that χ(x) = xµ+1/2, x ∈ (0,b).
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According to [19, Thm. 5.4-1], hµ(φ) ∈ Hµ and hµ(χ) ∈ Hµ . Hence, since (S,T) has
the (P)-property, from Proposition 2.5(i), it follows that

∫∞
0

(
S∗hµ(φ)

)
(x)

(
T ∗hµ(χ)

)
(x)dx

= lim
n→∞

∫∞
0

(
S∗hµ(φ)

)
(x)

(
T ∗hµ(χ)

)
(x)x−µ−1/2hµ(kn)(x)dx.

(2.26)

Suppose that {αn}n∈N is also a Hankel approximated identity. By [15, Prop. 4.5], we
can write
〈
x−µ−1/2hµ(αm)

(
S∗hµ(φ)

)
,
(
T ∗hµ(χ)

)
x−µ−1/2hµ(kn)

〉
= 〈h′µ(x−µ−1/2hµ(αm)(S∗hµ(φ))),hµ((T ∗hµ(χ))x−µ−1/2hµ(kn))〉
= 〈(x−µ−1/2φh′µ(S))∗αm,(x−µ−1/2χh′µ(T))∗kn〉, n, m∈N.

(2.27)

Since (T ∗hµ(χ))x−µ−1/2hµ(kn)∈Hµ ([15, Prop. 3.5]), n∈N, also
(
x−µ−1/2χh′µ(T)

)∗
kn ∈Hµ , n∈N. Hence, by Proposition 2.5(iii), we have, for each n∈N,
〈(
x−µ−1/2φh′µ(S)

)∗αm,(x−µ−1/2χh′µ(T))∗kn〉
�→ 〈x−µ−1/2φh′µ(S),(x−µ−1/2χh′µ(T))∗kn〉, asm �→∞. (2.28)

Moreover, since (S,T) has the (P)-property and according to Proposition 2.5(i), one
has, for every n∈N,
〈
x−µ−1/2hµ

(
αm

)(
S∗hµ(φ)

)
,
(
T ∗hµ(χ)

)
x−µ−1/2hµ(kn)

〉

=
∫∞
0
x−µ−1/2hµ(αm)(x)

(
S∗hµ(φ)

)
(x)

(
T ∗hµ(χ)

)
(x)x−µ−1/2hµ(kn)(x)dx

�→
∫∞
0

(
S∗hµ(φ)

)
(x)

(
T ∗hµ(χ)

)
(x)x−µ−1/2hµ(kn)(x)dx

= 〈S∗hµ(φ),(T ∗hµ(χ))x−µ−1/2hµ(kn)〉, asm→∞.
(2.29)

Hence, for every n∈N,
〈
S∗hµ(φ),

(
T ∗hµ(χ)

)
x−µ−1/2hµ(kn)

〉
= 〈x−µ−1/2φh′µ(S),(x−µ−1/2χh′µ(T))∗kn〉.

(2.30)

On the other hand, since χ(x) = xµ+1/2, x ∈ (0,b), being b > a, there exists n0 ∈ N
such that

〈
x−µ−1/2φh′µ(S),

(
x−µ−1/2χh′µ(T)

)∗kn〉
= 〈h′µ(S),x−µ−1/2φ(h′µ(T)∗kn)〉 for every n≥n0.

(2.31)

Moreover, according to [15, Prop. 3.5],

〈
h′µ(S#T),φ

〉= 〈S#T ,hµ(φ)〉= 〈S#T ,hµ(x−µ−1/2χφ)〉
= 〈S#T ,hµ(φ)∗hµ(χ)〉= 〈(S#T)∗hµ(φ),hµ(χ)〉. (2.32)
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By combining (2.26), (2.30), and (2.32), it follows that〈
h′µ(S#T),φ

〉= 〈(S#T)∗hµ(φ),hµ(χ)〉

= lim
n→∞

∫∞
0

(
S∗hµ(φ)

)
(x)

(
T ∗hµ(χ)

)
(x)x−µ−1/2hµ(kn)(x)dx

= lim
n→∞

〈
x−µ−1/2h′µ(S)

(
h′µ(T)∗kn

)
,φ
〉
.

(2.33)

Thus, the proof is complete.

Remark. Propositions 2.4 and 2.6 are extensions of [15, Props. 4.5 and 4.7].
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