A GENERALIZED HANKEL CONVOLUTION ON ZEMANIAN SPACES

JORGE J. BETANCOR

(Received 4 May 1998)

ABSTRACT. We define a new generalized Hankel convolution on the Zemanian distribution spaces of slow growth.

Keywords and phrases. Hankel convolution, Hankel transformation, Zemanian spaces.

2000 Mathematics Subject Classification. Primary 46F12.

1. Introduction. Zemanian (see [17, 19]) investigated the Hankel integral transformation, defined by

$$h_{\mu}(\phi)(y) = \int_{0}^{\infty} (xy)^{1/2} J_{\mu}(xy)\phi(x) \, dx, \quad y \in (0,\infty), \tag{1.1}$$

where J_{μ} represents the Bessel function of the first kind and of order μ , in spaces of generalized functions. Throughout this paper, μ is greater than -1/2.

In [17], it was introduced the space H_{μ} constituted by all those complex valued and smooth functions ϕ on $(0, \infty)$ such that

$$\gamma_{m,k}^{\mu}(\phi) = \sup_{x \in (0,\infty)} \left| x^m \left(\frac{1}{x} D \right)^k (x^{-\mu - 1/2} \phi(x)) \right| < \infty$$
(1.2)

for every $m, k \in \mathbb{N}$. H_{μ} is endowed with the topology generated by the family $\{\gamma_{m,k}^{\mu}\}_{m,k\in\mathbb{N}}$ of seminorms and, thus, H_{μ} is a Fréchet space. The space \mathbb{O} of multipliers of H_{μ} was characterized in [3] as follows. A smooth function f on $(0, \infty)$ is in \mathbb{O} if and only if, for every $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $(1 + x^2)^n ((1/x)D)^k f(x)$ is a bounded function on $(0, \infty)$ (see [3, Thm. 2.3]). The Hankel transformation h_{μ} is an automorphism of H_{μ} (see [19, Thm. 5.4-1]). The dual space of H_{μ} is denoted by H'_{μ} as usual. The Hankel transformation is defined on H'_{μ} as the transform $h'_{\mu}f$ of f is given by

$$\langle h'_{\mu}f,\phi\rangle = \langle f,h_{\mu}\phi\rangle, \quad \phi \in H_{\mu}.$$
 (1.3)

Thus, h'_{μ} is an automorphism of H'_{μ} when it is considered on H'_{μ} the weak* or the strong topology.

Zemanian [18] defined the spaces of functions $B_{\mu,a}$, $a \in (0, \infty)$ and B_{μ} as follows. Let $a \in (0, \infty)$. A smooth function ϕ on $(0, \infty)$ is in $B_{\mu,a}$ provided that $\phi \in H_{\mu}$ and $\phi(x) = 0$, $x \in (a, \infty)$. This space $B_{\mu,a}$ is equipped with the topology induced by H_{μ} on it. Thus, $B_{\mu,a}$ is a Fréchet space. Moreover, if 0 < a < b, then $B_{\mu,a}$ is continuously contained in

 $B_{\mu,b}$. The union space $B_{\mu} = \bigcup_{a>0} B_{\mu,a}$ is endowed with the inductive topology. B_{μ} is a dense subspace of H_{μ} . The dual space of B_{μ} is denoted by B'_{μ} . In [18, Thm. 1], the Hankel transform $h_{\mu}(B_{\mu})$ of B_{μ} was characterized.

Haimo [12], Hirschman, Jr. [14], and Cholewinski [10] studied the convolution for a variant of the Hankel transformation, which is closely connected to h_{μ} . After straightforward manipulations in the convolution operators defined by the above mentioned authors, a convolution for the transformation h_{μ} can be obtained. Said convolution operation is defined as follows. Let *f* and *g* be measurable functions on $(0, \infty)$. The Hankel convolution f * g of *f* and *g* is given by

$$(f * g)(x) = \int_0^\infty f(y)(\tau_x g)(y) \, dy,$$
 (1.4)

where

$$(\tau_x g)(y) = \int_0^\infty g(z) D_\mu(x, y, z) dz$$
(1.5)

provided that the above integrals exist, and being

$$D_{\mu}(x, y, z) = \int_{0}^{\infty} t^{-\mu - 1/2} (xt)^{1/2} J_{\mu}(xt) (yt)^{1/2} J_{\mu}(yt) (zt)^{1/2} J_{\mu}(zt) dt, \quad x, y, z \in (0, \infty).$$
(1.6)

If $x^{\mu+1/2}f$ and $x^{\mu+1/2}g$ are in $L_1(0,\infty)$, the space of absolutely integrable functions on $(0,\infty)$, then $x^{\mu+1/2}(f*g) \in L_1(0,\infty)$ and the interchange formula

$$h_{\mu}(f * g)(x) = x^{-\mu - 1/2} h_{\mu}(f)(x) h_{\mu}(g)(x), \quad x \in (0, \infty)$$
(1.7)

holds.

The study of the Hankel convolution on distribution spaces was started by Sousa-Pinto [11]. He defined the Hankel convolution of distributions of compact support on $(0, \infty)$ for $\mu = 0$. In the last years, the * convolution was studied in different spaces of generalized functions by Betancor and Marrero (see [4, 5, 6, 7, 15]), Betancor and González [1], and Betancor and Rodríguez-Mesa (see [9, 8]).

The Hankel translation τ_x defines a continuous mapping from H_{μ} into itself for every $x \in (0, \infty)$ (see [15, Prop. 2.1]). Then the Hankel convolution $T * \phi$ of $T \in H'_{\mu}$ and $\phi \in H_{\mu}$ can be defined by

$$(T * \phi)(x) = \langle T, \tau_x \phi \rangle, \quad x \in (0, \infty).$$
(1.8)

In [15, Prop. 3.5], it was proved that $x^{-\mu-1/2}(T * \phi) \in \mathbb{O}$ for every $T \in H'_{\mu}$ and $\phi \in H_{\mu}$. The subspace $\mathbb{O}'_{\mu,*}$ of H'_{μ} consisting of the convolution operators in H_{μ} was characterized in [15, Prop. 4.2] as follows. A functional $T \in H'_{\mu}$ belongs to $\mathbb{O}'_{\mu,*}$ (i.e., $T * \phi \in H_{\mu}$ for every $\phi \in H_{\mu}$) if and only if $x^{-\mu-1/2}h'_{\mu}(T)$ is in \mathbb{O} . The convolution S * T of $S \in H'_{\mu}$ and $T \in \mathbb{O}'_{\mu,*}$ is defined in [15].

DEFINITION 1. Let $S \in H'_{\mu}$ and $T \in \mathbb{O}'_{\mu,*}$. The *-convolution S * T of S and T is the element of H'_{μ} defined by

$$\langle S * T, \phi \rangle = \langle S, T * \phi \rangle, \quad \phi \in H_{\mu}.$$
 (1.9)

If $S \in H'_{\mu}$ and $T \in \mathbb{O}'_{\mu,*}$, the following extension of the interchange formula (1.7):

$$h'_{\mu}(S*T)(x) = x^{-\mu - 1/2} h'_{\mu}(S) h'_{\mu}(T)$$
(1.10)

holds.

In this paper, inspired in [13], we define the Hankel convolution in a subspace of $H'_{\mu} \times H'_{\mu}$ that contains $H'_{\mu} \times \mathbb{O}'_{\mu,*}$. The new convolution generalizes the one defined in [15, Def. 1].

Throughout this paper, *C* always denotes a suitable positive constant, which is not necessarily the same in each occurrence.

2. The generalized Hankel convolution on H'_{μ} . Now, we are going to define a new generalized Hankel convolution on H'_{μ} . Let *S* and *T* be in H'_{μ} . Assume that

- (P.1) $(S * \phi)(T * \psi) \in L_1(0, \infty)$ for every $\phi, \psi \in H_\mu$,
- (P.2) $\int_0^\infty \tau_x(T * \phi)(y)(S * \psi)(y) dy = \int_0^\infty (T * \phi)(y) \tau_x(S * \psi)(y) dy \text{ for every } \phi, \psi \in H_\mu \text{ and } x \in (0, \infty).$

When *S* and *T* satisfy properties (P.1) and (P.2), we say that the pair (S, T) has the (*P*)-property for the sake of simplicity.

Fixing $\psi \in H_{\mu}$, we define the linear mapping F_{ψ} from H_{μ} into the space $D'(0, \infty)$ of the distributions in $(0, \infty)$ by

$$F_{\psi}(\phi) = (S * \psi)(T * \phi), \quad \phi \in H_{\mu}.$$

$$(2.1)$$

 F_{ψ} is a continuous mapping when $D'(0, \infty)$ is endowed with the weak* topology. Indeed, according to [15, Prop. 3.5], $x^{-\mu-1/2}(S * \phi) \in \mathbb{O}$ and $x^{-\mu-1/2}(T * \phi) \in \mathbb{O}$ for each $\phi \in H_{\mu}$. Also, $x^{-\mu-1/2}(T * \phi_n) \to 0$, as $n \to \infty$, in \mathbb{O} provided that $\phi_n \to 0$, as $n \to \infty$, in H_{μ} . Hence, if $\phi_n \to 0$, as $n \to \infty$, in H_{μ} , then $F_{\psi}(\phi_n) \to 0$, as $n \to \infty$, in $D'(0, \infty)$. Then we conclude that F_{ψ} is continuous.

Therefore, since (S, T) satisfies (P.1), [16, Thm. 2] implies that F_{ψ} is a continuous mapping from H_{μ} into $L_1(0, \infty)$.

In other words, we have seen that the bilinear mapping

$$L: H_{\mu} \times H_{\mu} \longrightarrow L_1(0, \infty) \tag{2.2}$$

defined by

$$L(\phi,\psi) = (S*\psi)(T*\phi), \quad \psi,\phi \in H_{\mu}$$
(2.3)

is separately continuous. Then, since H_{μ} is a Fréchet space, the bilinear form \mathcal{L} , defined on $H_{\mu} \times H_{\mu}$ by

$$\mathscr{L}(\phi,\psi) = \int_0^\infty (S*\psi)(x)(T*\phi)(x)\,dx, \quad \psi, \ \phi \in H_\mu$$
(2.4)

is continuous.

Now, we introduce the linear mapping \mathbb{L} from H_{μ} into H'_{μ} as follows. For every $\psi \in H_{\mu}$, $\mathbb{L}(\psi)$ denotes the element of H'_{μ} defined by

$$\langle \mathbb{L}(\psi), \phi \rangle = \mathscr{L}(\psi, \phi), \quad \phi \in H_{\mu}.$$
 (2.5)

From [5, Lem. 2.2] and by taking into account that (S, T) satisfies (P.2), we have

$$\mathbb{L}(\tau_{\mathcal{Y}}\psi) = \tau_{\mathcal{Y}}(\mathbb{L}\psi), \quad \psi \in H_{\mu}.$$
(2.6)

Hence, according to [7, Prop. 1], there exists a unique $R \in H'_{\mu}$ such that

$$\mathbb{L}(\psi) = R * \psi, \quad \psi \in H_{\mu}. \tag{2.7}$$

DEFINITION 2. Let *S* and $T \in H'_{\mu}$ such that the pair (*S*, *T*) satisfies the (*P*)-property. We define the Hankel convolution *S*#*T* of *S* and *T* as the unique element of H'_{μ} satisfying

$$\langle (S#T) * \psi, \phi \rangle = \int_0^\infty (S * \psi)(x) (T * \phi)(x) dx, \quad \psi, \phi \in H_\mu.$$
(2.8)

Now, we show that Definition 2 applies to a wide class of generalized functions in H'_{μ} . Let $m \in \mathbb{Z}$. We consider the space Y_m that consists of all those complex valued and smooth functions f on $(0, \infty)$ such that

$$\sup_{x \in (0,\infty)} \left(1 + x^2 \right)^m x^{-\mu - 1/2} |f(x)| < \infty.$$
(2.9)

According to [15, proof of Prop. 3.5], if $T \in H'_{\mu}$, then there exists $m \in \mathbb{Z}$ for which $T * \phi \in Y_m$, for each $\phi \in H_{\mu}$. We say that a functional $T \in H'_{\mu}$ is in \mathbb{Y}_m when $T * \phi \in Y_m$ for every $\phi \in H_{\mu}$.

PROPOSITION 2.1. Let $S \in \mathbb{Y}_k$ and $T \in \mathbb{Y}_m$. Then (S,T) has the (P)-property provided that $m + k < \mu + 1$.

PROOF. Let ϕ , $\psi \in H_{\mu}$. It is easy to see that

$$(S * \psi)(T * \phi) \in L_1(0, \infty).$$

$$(2.10)$$

Let $x \in (0, \infty)$. We can write ([14, (2), p. 308])

$$\tau_{x}(T * \phi)(y) = \int_{|x-y|}^{x+y} D_{\mu}(x, y, z)(T * \phi)(z) \, dz, \quad y \in (0, \infty).$$
(2.11)

Moreover, since $S \in \mathbb{Y}_k$ and $T \in \mathbb{Y}_m$, by taking into account [14, (2), p. 310], it follows that

$$\int_{0}^{\infty} \left| (S * \psi)(y) \right| \int_{|x-y|}^{x+y} D_{\mu}(x, y, z) \left| (T * \phi)(z) \right| dz dy$$

$$\leq C \int_{0}^{\infty} y^{\mu+1/2} \left(1 + y^{2} \right)^{-k} \int_{|x-y|}^{x+y} D_{\mu}(x, y, z) z^{\mu+1/2} \left(1 + z^{2} \right)^{-m} dz dy \quad (2.12)$$

$$\leq C x^{\mu+1/2} \int_{0}^{\infty} \left(1 + y^{2} \right)^{-m-k} y^{2\mu+1} dy < \infty.$$

Hence, Fubini theorem leads to

$$\int_{0}^{\infty} (S * \psi)(y) \tau_{x}(T * \phi)(y) \, dy = \int_{0}^{\infty} \tau_{x}(S * \psi)(y)(T * \phi)(y) \, dy.$$
(2.13)

Thus, we conclude that the pair (S, T) has the (P)-property.

In particular, from Proposition 2.1, we can immediately deduce the following.

COROLLARY 2.2. If $S \in H'_{\mu}$ and $T \in \mathbb{O}'_{\mu,*}$, then (S,T) has the (P)-property.

PROOF. According to [15, Prop. 4.3], $T * \psi \in H_{\mu}$, for every $\phi \in H_{\mu}$. Hence, $T \in Y_m$ for every $m \in \mathbb{Z}$ and, from Proposition 2.1, we infer that (S, T) has the (P)-property.

Now, we establish that the convolution * defined by Definition 1 on $H'_{\mu} \times \mathbb{O}'_{\mu,*}$ (see [15]) is a special case of the convolution # given in Definition 2.

PROPOSITION 2.3. Let $S \in H'_{\mu}$ and $T \in \mathbb{O}'_{\mu,*}$. Then S * T = S # T.

PROOF. By Corollary 2.2, the pair (S, T) has the (P)-property. Moreover, by invoking [15, Props. 3.5 and 4.3], we can write

$$\langle (S*T)*\psi,\phi\rangle = \langle S*T,\psi*\phi\rangle = \langle S,T*(\psi*\phi)\rangle$$

= $\langle S,(T*\phi)*\psi\rangle = \langle S*\psi,T*\phi\rangle$
= $\int_0^\infty (S*\psi)(x)(T*\phi)(x)dx, \quad \psi,\phi\in H_\mu.$ (2.14)

Thus, we conclude that S * T = S # T.

Next, some algebraic properties of the #-convolution are proved.

PROPOSITION 2.4. Let $S, T \in H'_{\mu}$ and $R \in \mathbb{C}'_{\mu,*}$. Assume that (S,T) satisfies the (P)-property. Then

(i) S#T = T#S.

(ii)
$$(S#T)#R = S#(T#R)$$

(iii) $T \# \delta_{\mu} = T$, where δ_{μ} represents the element of H'_{μ} defined by

$$\langle \delta_{\mu}, \phi \rangle = 2^{\mu} \Gamma(\mu+1) \lim_{x \to 0^+} x^{-\mu-1/2} \phi(x), \quad \phi \in H_{\mu}.$$
 (2.15)

(iv) $S_{\mu}(S\#T) = (S_{\mu}S)\#T = S\#(S_{\mu}T)$, where S_{μ} denotes the Bessel operator $x^{-\mu-1/2}D \times x^{2\mu+1}Dx^{-\mu-1/2}$.

PROOF. (i) It is clear that (T, S) has the (P)-property. Moreover, according to [15, Prop. 3.5], for every $\psi, \phi \in H_{\mu}$,

$$\langle (S\#T) * \psi, \phi \rangle = \langle S\#T, \psi * \phi \rangle = \langle (S\#T) * \phi, \psi \rangle$$

=
$$\int_0^\infty (S * \phi)(x) (T * \psi)(x) dx.$$
 (2.16)

Hence, S#T = T#S.

(ii) By virtue of Proposition 2.3, the pair (S#T, R) satisfies the (P)-property and (S#T)#R = (S#T)*R. Moreover, (S, T*R) has the (P)-property. Indeed, let $\psi, \phi \in H_{\mu}$. According to [15, Props. 4.3 and 4.7(i)], since (S, T) satisfies the (P)-property, we have

$$(S * \psi)((T * R) * \phi) = (S * \psi)(T * (R * \phi)) \in L_1(0, \infty),$$
(2.17)

and

$$\int_{0}^{\infty} \tau_{x} ((T * R) * \phi)(y)(S * \psi)(y) dy$$

$$= \int_{0}^{\infty} \tau_{x} (T * (R * \phi))(y)(S * \psi)(y) dy$$

$$= \int_{0}^{\infty} (T * (R * \phi))(y)\tau_{x}(S * \psi)(y) dy$$

$$= \int_{0}^{\infty} ((T * R) * \phi)(y)\tau_{x}(S * \psi)(y) dy, \quad x \in (0,\infty).$$
(2.18)

Also, we can write by [15, Props. 3.5 and 4.7(i)], for each $\phi, \psi \in H_{\mu}$,

$$\langle ((S\#T) * R) * \psi, \phi \rangle = \langle (S\#T) * (R * \psi), \phi \rangle$$

= $\langle S\#T, (R * \psi) * \phi \rangle$
= $\langle (S\#T) * \psi, R * \phi \rangle$
= $\int_0^\infty (S * \psi)(x) (T * (R * \phi))(x) dx$
= $\int_0^\infty (S * \psi)(x) ((T * R) * \phi)(x) dx.$ (2.19)

Thus, we conclude that (S#T) * R = S#(T * R).

(iii) It is immediately deduced from [15, Prop. 4.7(iv)] and Proposition 2.3.

(iv) Since (S,T) has the (P)-property, $(S_{\mu}S,T)$ and $(S,S_{\mu}T)$ also satisfy the same property. Indeed, let $\psi, \phi \in H_{\mu}$. Then, since the Bessel operator S_{μ} is a continuous operator from H_{μ} into itself [19, Lem. 5.3-3], by [15, Prop. 4.7(iii)],

$$((S_{\mu}S)*\psi)(T*\phi) = (S*(S_{\mu}\psi))(T*\phi) \in L_1(0,\infty),$$

and

$$\int_{0}^{\infty} \tau_{x}(T * \phi)(y)((S_{\mu}S) * \psi)(y)dy$$

$$= \int_{0}^{\infty} \tau_{x}(T * \phi)(y)(S * (S_{\mu}\psi))(y)dy$$

$$= \int_{0}^{\infty} (T * \phi)(y)\tau_{x}(S * (S_{\mu}\psi))(y)dy$$

$$= \int_{0}^{\infty} (T * \phi)(y)\tau_{x}((S_{\mu}S) * \psi)(y)dy, \quad x \in (0,\infty).$$
(2.20)

Moreover, by [15, Prop. 2.2(ii)], we get

$$\langle S_{\mu}(S^{\#}T) * \psi, \phi \rangle = \langle S_{\mu}(S^{\#}T), \psi * \phi \rangle = \langle S^{\#}T, (S_{\mu}\psi) * \phi \rangle$$

$$= \int_{0}^{\infty} (S * (S_{\mu}\psi))(x)(T * \phi)(x) dx$$

$$= \int_{0}^{\infty} ((S_{\mu}S) * \psi)(x)(T * \phi)(x) dx, \quad \psi, \phi \in H_{\mu}.$$
 (2.21)

Hence, $S_{\mu}(S \# T) = (S_{\mu}S) \# T$.

To complete the proof of (iv), it is sufficient to take into account (i).

Our next objective is to prove an interchange formula that relates the Hankel transformation h'_{μ} to the #-convolution.

First, we need to define the product $T \cdot S$ of T and S belonging to H'_{μ} .

As in [4], we say that a sequence $\{k_n\}_{n \in \mathbb{N}} \subset B_{\mu}$ is a Hankel approximated identity when the following three conditions hold for every $n \in N$:

(i) $k_n(x) \ge 0, x \in (0, \infty);$

(ii) $k_n(x) = 0, x \notin ((1/n+1), (1/n));$

(iii) $\int_0^{1/n} k_n(x) x^{\mu+1/2} dx = 2^{\mu} \Gamma(\mu+1).$

Three useful properties of the Hankel approximated identities follow.

PROPOSITION 2.5 ([2, Prop. 1] and [6, proof of Prop. 2.4, p. 1148]). Let $\{k_n\}_{n \in \mathbb{N}}$ be a Hankel approximated identity. Then, we have

(i) For every a > 0, $y^{-\mu-1/2}h_{\mu}(k_n)(y) \to 1$, as $n \to \infty$, uniformly in (0,a), and there exists M > 0 such that $|y^{-\mu-1/2}h_{\mu}(k_n)(y)| \le M$, $n \in \mathbb{N}$ and $y \in (0,\infty)$.

(ii) For every $\phi \in H_{\mu}$, $k_n * \phi \to \phi$, as $n \to \infty$, in H_{μ} .

(iii) For every $T \in H'_{\mu}$, $T * k_n \to T$, as $n \to \infty$, in the strong topology of H'_{μ} .

Let *T* and *S* be in H'_{μ} . We say that $R \in B'_{\mu}$ is the product $x^{-\mu-1/2}T \cdot S$ and we write $R = x^{-\mu-1/2}T \cdot S$ if for every Hankel approximated identity $\{k_n\}_{n\in\mathbb{N}}, x^{-\mu-1/2}(T*k_n)S \to R$ and $x^{-\mu-1/2}(S*k_n)T \to R$, as $n \to \infty$, in the weak* topology of B'_{μ} .

Note that if $T, S \in H'_{\mu}$ and there exists the product $x^{-\mu-1/2}T \cdot S$ of T and S, then also there exists the product $x^{-\mu-1/2}S \cdot T$ of S and T, and $x^{-\mu-1/2}T \cdot S = x^{-\mu-1/2}S \cdot T$. Moreover, if $T \in H_{\mu}$ and $S \in H'_{\mu}$, then

$$\langle x^{-\mu-1/2}T \cdot S, \phi \rangle = \langle S, x^{-\mu-1/2}T\phi \rangle, \quad \phi \in B_{\mu}.$$
(2.22)

Indeed, let $\{k_n\}_{n \in \mathbb{N}}$ be a Hankel approximated identity. Then we have, by Proposition 2.5(ii) and (iii),

$$\langle x^{-\mu-1/2}(T * k_n)S, \phi \rangle = \langle S, x^{-\mu-1/2}(T * k_n)\phi \rangle \longrightarrow \langle S, x^{-\mu-1/2}T\phi \rangle, \quad \text{as } n \longrightarrow \infty,$$

$$\langle x^{-\mu-1/2}(S * k_n)T, \phi \rangle = \langle S * k_n, x^{-\mu-1/2}T\phi \rangle \longrightarrow \langle S, x^{-\mu-1/2}T\phi \rangle, \quad \text{as } n \longrightarrow \infty,$$

$$(2.23)$$

for every $\phi \in B_{\mu}$.

Hence, the product that we have defined between two elements of H'_{μ} extends the usual product of a function in H_{μ} by a distribution in H'_{μ} .

PROPOSITION 2.6 (The interchange formula). Let $S, T \in H'_{\mu}$. Assume that the pair (S,T) has the (P)-property. Then, we have

$$h'_{\mu}(S\#T) = x^{-\mu - 1/2} h'_{\mu}(S) \cdot h'_{\mu}(T).$$
(2.24)

PROOF. We only have to prove that, for every $\phi \in B_{\mu}$,

$$\langle x^{-\mu-1/2}(h'_{\mu}(S)*k_n)h'_{\mu}(T),\phi\rangle \longrightarrow \langle h'_{\mu}(S\#T),\phi\rangle, \text{ as } n \longrightarrow \infty,$$
 (2.25)

where $\{k_n\}_{n \in \mathbb{N}}$ is a Hankel approximated identity.

Let $\phi \in B_{\mu}$ and let $\{k_n\}_{n \in \mathbb{N}}$ be a Hankel approximated identity. There exists a > 0 such that $\phi \in B_{\mu,a}$. Choose b > a and $\chi \in B_{\mu}$ such that $\chi(x) = x^{\mu+1/2}$, $x \in (0,b)$.

According to [19, Thm. 5.4-1], $h_{\mu}(\phi) \in H_{\mu}$ and $h_{\mu}(\chi) \in H_{\mu}$. Hence, since (S, T) has the (P)-property, from Proposition 2.5(i), it follows that

$$\int_{0}^{\infty} (S * h_{\mu}(\phi))(x) (T * h_{\mu}(\chi))(x) dx$$

$$= \lim_{n \to \infty} \int_{0}^{\infty} (S * h_{\mu}(\phi))(x) (T * h_{\mu}(\chi))(x) x^{-\mu - 1/2} h_{\mu}(k_{n})(x) dx.$$
(2.26)

Suppose that $\{\alpha_n\}_{n\in\mathbb{N}}$ is also a Hankel approximated identity. By [15, Prop. 4.5], we can write

$$\langle x^{-\mu-1/2} h_{\mu}(\alpha_{m}) (S * h_{\mu}(\phi)), (T * h_{\mu}(\chi)) x^{-\mu-1/2} h_{\mu}(k_{n}) \rangle$$

= $\langle h'_{\mu}(x^{-\mu-1/2} h_{\mu}(\alpha_{m}) (S * h_{\mu}(\phi))), h_{\mu}((T * h_{\mu}(\chi)) x^{-\mu-1/2} h_{\mu}(k_{n})) \rangle$ (2.27)
= $\langle (x^{-\mu-1/2} \phi h'_{\mu}(S)) * \alpha_{m}, (x^{-\mu-1/2} \chi h'_{\mu}(T)) * k_{n} \rangle, \quad n, m \in \mathbb{N}.$

Since $(T * h_{\mu}(\chi)) x^{-\mu-1/2} h_{\mu}(k_n) \in H_{\mu}$ ([15, Prop. 3.5]), $n \in \mathbb{N}$, also $(x^{-\mu-1/2} \chi h'_{\mu}(T)) * k_n \in H_{\mu}$, $n \in \mathbb{N}$. Hence, by Proposition 2.5(iii), we have, for each $n \in \mathbb{N}$,

$$\langle (x^{-\mu-1/2}\phi h'_{\mu}(S)) * \alpha_{m}, (x^{-\mu-1/2}\chi h'_{\mu}(T)) * k_{n} \rangle \rightarrow \langle x^{-\mu-1/2}\phi h'_{\mu}(S), (x^{-\mu-1/2}\chi h'_{\mu}(T)) * k_{n} \rangle, \text{ as } m \to \infty.$$

$$(2.28)$$

Moreover, since (S, T) has the (P)-property and according to Proposition 2.5(i), one has, for every $n \in \mathbb{N}$,

$$\langle x^{-\mu-1/2} h_{\mu}(\alpha_{m}) (S * h_{\mu}(\phi)), (T * h_{\mu}(\chi)) x^{-\mu-1/2} h_{\mu}(k_{n}) \rangle$$

$$= \int_{0}^{\infty} x^{-\mu-1/2} h_{\mu}(\alpha_{m})(x) (S * h_{\mu}(\phi))(x) (T * h_{\mu}(\chi))(x) x^{-\mu-1/2} h_{\mu}(k_{n})(x) dx$$

$$\rightarrow \int_{0}^{\infty} (S * h_{\mu}(\phi))(x) (T * h_{\mu}(\chi))(x) x^{-\mu-1/2} h_{\mu}(k_{n})(x) dx$$

$$= \langle S * h_{\mu}(\phi), (T * h_{\mu}(\chi)) x^{-\mu-1/2} h_{\mu}(k_{n}) \rangle, \text{ as } m \to \infty.$$

$$(2.29)$$

Hence, for every $n \in \mathbb{N}$,

$$\langle S * h_{\mu}(\phi), (T * h_{\mu}(\chi)) x^{-\mu - 1/2} h_{\mu}(k_{n}) \rangle = \langle x^{-\mu - 1/2} \phi h'_{\mu}(S), (x^{-\mu - 1/2} \chi h'_{\mu}(T)) * k_{n} \rangle.$$
(2.30)

On the other hand, since $\chi(x) = x^{\mu+1/2}$, $x \in (0, b)$, being b > a, there exists $n_0 \in \mathbb{N}$ such that

$$\langle x^{-\mu-1/2} \phi h'_{\mu}(S), (x^{-\mu-1/2} \chi h'_{\mu}(T)) * k_n \rangle$$

= $\langle h'_{\mu}(S), x^{-\mu-1/2} \phi (h'_{\mu}(T) * k_n) \rangle$ for every $n \ge n_0.$ (2.31)

Moreover, according to [15, Prop. 3.5],

$$\langle h'_{\mu}(S^{\#}T), \phi \rangle = \langle S^{\#}T, h_{\mu}(\phi) \rangle = \langle S^{\#}T, h_{\mu}(x^{-\mu-1/2}\chi\phi) \rangle$$

= $\langle S^{\#}T, h_{\mu}(\phi) * h_{\mu}(\chi) \rangle = \langle (S^{\#}T) * h_{\mu}(\phi), h_{\mu}(\chi) \rangle.$ (2.32)

By combining (2.26), (2.30), and (2.32), it follows that

$$\langle h'_{\mu}(S\#T), \phi \rangle = \langle (S\#T) * h_{\mu}(\phi), h_{\mu}(\chi) \rangle$$

=
$$\lim_{n \to \infty} \int_{0}^{\infty} (S * h_{\mu}(\phi))(x) (T * h_{\mu}(\chi))(x) x^{-\mu - 1/2} h_{\mu}(k_{n})(x) dx$$
(2.33)
=
$$\lim_{n \to \infty} \langle x^{-\mu - 1/2} h'_{\mu}(S) (h'_{\mu}(T) * k_{n}), \phi \rangle.$$

Thus, the proof is complete.

REMARK. Propositions 2.4 and 2.6 are extensions of [15, Props. 4.5 and 4.7].

ACKNOWLEDGEMENT. This work is partially supported by DGICYT grant PB 94-0591 (Spain).

REFERENCES

- J. J. Betancor and B. J. Gonzàlez, A convolution operation for a distributional Hankel transformation, Studia Math. 117 (1995), no. 1, 57–72. MR 97c:46049. Zbl 837.46029.
- [2] J. J. Betancor, M. Linares, and J. M. R. Méndez, *The Hankel transform of integrable Boehmi-ans*, Applicable Anal. 58 (1995), no. 3-4, 367–382. MR 97h:44010. Zbl 831.44004.
- J. J. Betancor and I. Marrero, *Multipliers of Hankel transformable generalized functions*, Comment. Math. Univ. Carolin. 33 (1992), no. 3, 389-401. MR 94f:46051. Zbl 801.46047.
- [4] _____, The Hankel convolution and the Zemanian spaces β_{μ} and β'_{μ} , Math. Nachr. 160 (1993), 277-298. MR 95j:46042. Zbl 796.46023.
- [5] _____, Some properties of Hankel convolution operators, Canad. Math. Bull. 36 (1993), no. 4, 398-406. MR 95f:46064. Zbl 795.46024.
- [6] _____, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon. 38 (1993), no. 6, 1141–1155. MR 95j:46043. Zbl 795.46023.
- [7] _____, Algebraic characterization of convolution and multiplication operators on Hankeltransformable function and distribution spaces, Rocky Mountain J. Math. 25 (1995), no. 4, 1189–1204. MR 97a:46054. Zbl 853.46034.
- [8] J. J. Betancor and L. Rodríguez-Mesa, Hankel convolution on distribution spaces with exponential growth, Studia Math. 121 (1996), no. 1, 35–52. MR 98e:46047. Zbl 862.46021.
- [9] _____, On Hankel convolution equations in distribution spaces, Rocky Mountain J. Math. 29 (1999), no. 1, 93-114. Zbl 990.48075.
- [10] F. M. Cholewinski, A Hankel convolution complex inversion theory, Mem. Amer. Math. Soc. 58 (1965), 67. MR 31#5043. Zbl 137.30901.
- [11] J. de Sousa-Pinto, A generalised Hankel convolution, SIAM J. Math. Anal. 16 (1985), no. 6, 1335–1346. MR 87g:44004. Zbl 592.46038.
- [12] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116 (1965), 330-375. MR 32#2847. Zbl 135.33502.
- Y. Hirata and H. Ogata, On the exchange formula for distributions, J. Sci. Hiroshima Univ. Ser. A 22 (1958), 147-152. MR 22#897. Zbl 088.08603.
- [14] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960/1961), 307-336. MR 28#433. Zbl 099.31301.
- [15] I. Marrero and J. J. Betancor, *Hankel convolution of generalized functions*, Rend. Mat. Appl.
 (7) 15 (1995), no. 3, 351–380. MR 96m:46072. Zbl 833.46026.
- [16] K. Yoshinaga and H. Ogata, On convolutions, J. Sci. Hiroshima Univ. Ser. A 22 (1958), 15-24. MR 21#6532. Zbl 088.33202.
- [17] A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576. MR 34#1807. Zbl 154.13803.

- [18] _____, *The Hankel transformation of certain distributions of rapid growth*, SIAM J. Appl. Math. **14** (1966), 678-690. MR 35#2093. Zbl 154.13804.
- [19] _____, *Generalized Integral Transformations*, Pure and Applied Mathematics, vol. XVIII, Interscience Publishers [John Wiley & Sons, Inc.], New York, London, Sydney, 1968. MR 54 10991.

JORGE J. BETANCOR

BETANCOR: DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE LA LAGUNA, 38271-LA LAGUNA. TENERIFE, ISLAS CANARIAS, ESPAÑA

E-mail address: jbetanco@ull.es