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Abstract. This paper is devoted to closed-form solutions of the partial differential equa-
tion: θxx + θyy +δexp(θ) = 0, which arises in the steady state thermal explosion the-
ory. We find simple exact solutions of the form θ(x,y) = Φ(F(x)+G(y)), and θ(x,y) =
Φ(f (x+y)+g(x−y)). Also, we study the corresponding nonlinear wave equation.
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1. Introduction. In this paper, we study the following standard nonlinear partial
differential equation, which occurs in combustion theory.

θxx+θyy+δexp(θ)= 0, (1.1)

where as usual x and y denote cartesian coordinates, θ(x,y) is the dimensionless
temperature, and δ is a strictly positive constant which is sometimes referred to as
the Frank-Kamenetskii parameter. In particular, (1.1) arises in the thermal explosion
theory of an exothermic reaction of a gas, taking place in a closed vessel, or of a solid
in the important limiting case of large activation energy [3, 4].
In a recent related paper, Rubel [7] found simple exact solutions of (1.1) with δ= 0

via quasisolutions of the form Φ(F(x)+G(y)). Rubel pointed out that the organized
method of differential-stäcked matrices in [5] has some advantages over the ad hoc
method of [7], but that the calculations are still lengthy. It is worth pointing out that
simple exact solutions for many nonlinear partial differential equations are always
important, because closed-form (or explicit) solutions are so hard to come by that any
examples are valuable in themselves.
The present paper considers (1.1), which was examined in [1] for the case of a slab

with spatially periodic surface temperature, but we found simple exact solutions of a
kind of separation of variables of the form

θ(x,y)= Φ(F(x)+G(y)). (1.2)

We also study the corresponding nonlinear wave equation. However, it is worth point-
ing out that Stuart [9] investigated a class of solutions of (1.1) which arises in the
nonlinear inviscid incompressible motion of laminar fluid.
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The germ of our procedure is contained in the paper by Rubel [7] and the solutions
are better left in the more general form. All functions appearing in this paper are
supposed to be real analytic on a domain in the appropriate Euclidean space.

2. Laplace’s equation with nonlinear source term

Theorem 2.1. Suppose that θ = Φ(F(x)+G(y)) is a nonconstant real solution of
(1.1). Then for δ > 0, there exists some real constants A, B, C , and λ such that θ has at
least the following six forms:

θ =−2ln[A+B(x2+y2)] provided 8AB = δ, (2.1)

θ =−2ln[A+Bx+C(x2+y2)] provided 8AC = 2B2+δ(
also, θ =−2ln[A+By+C(x2+y2)] provided 8AC = 2B2+δ,
and θ =−2ln[A+B(x+y)+C(x2+y2)] provided 8AC = 4B2+δ),

(2.2)

θ =−2ln[Acoshλx] provided 2λ2A2 = δ, (2.3)

θ =−2ln[Acoshλy] provided 2λ2A2 = δ, (2.4)

θ =−2ln[Acoshλx−B cosλy] provided 2λ2
(
A2−B2)= δ, (2.5)

θ =−2ln[Acoshλy−B cosλx] provided 2λ2
(
A2−B2)= δ. (2.6)

Furthermore, each of these cases gives a solution of the form Φ(F(x)+G(y)).
Proof. Let z = x+iy . Then z = x−iy . Therefore,

∂2

∂x2
= ∂2

∂z2
+2 ∂2

∂z∂z
+ ∂2

∂z2
(2.7)

and

∂2

∂y2
=−

(
∂2

∂z2
−2 ∂2

∂z∂z
+ ∂2

∂z2

)
. (2.8)

Substituting (2.7) and (2.8) into (1.1), we obtain

∂2θ
∂z∂z

+ δ
4
exp(θ)= 0. (2.9)

By differentiating (2.9) partially with respect to z and then eliminating the exponential
term between the resulting expression and (2.9), we find that

∂3θ
∂2z∂z

− ∂θ
∂z

∂2θ
∂z∂z

= 0. (2.10)

Equation (2.10) can be expressed as

∂
∂z

(
∂2θ
∂z2

− 1
2

(
∂θ
∂z

)2)
= 0. (2.11)
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Integrating (2.11) with respect to z, we get

∂2θ
∂z2

− 1
2

(
∂θ
∂z

)2
=−2P(z), (2.12)

where P(z) is an arbitrary function and can be chosen to generate all the required
explicit solutions. Define α(z,z) by

∂θ
∂z

=− 2
α
∂α
∂z

. (2.13)

Then by substituting in (2.12), we get

∂2α
∂z2

= P(z)α. (2.14)

The required solution can be written in the form

α(z,z)=α1(z)α1(z)+α2(z)α2(z), (2.15)

whereα1(z) andα2(z) are analytic functions of z and independent solutions of (2.14).
The definition (2.13) gives

α= exp
(
− θ
2

)
. (2.16)

Differentiating (2.13) partially with respect to z gives

∂2θ
∂z∂z

=−2
(
1
α
∂2α
∂z∂z

− 1
α2

∂α
∂z

∂α
∂z

)
. (2.17)

In (2.17), substituting for α from (2.15) results in

∂2θ
∂z∂z

=− 2
α2
|µ|2, (2.18)

where

µ(z)=α1dα2dz
−α2dα1dz

. (2.19)

Substitution of (2.16) and (2.18) in (2.9) gives

|µ|2 = δ
8
. (2.20)

To obtain the low-degree polynomials in (x,y), we chose P(z)= 0.
Case 1 of Theorem 2.1. Let α1 = A1/2 and α2 = B1/2z, where A and B are real

constants. Substituting in (2.15) then gives α= exp(−θ/2)=A+B(x2+y2). Thus, we
have 8AB = δ.

Case 2 of Theorem 2.1. Let α1 = B1/20 +C1/2z and α2 =A1/20 , where A0, B0, and C
are real constants. Substituting in (2.15) then gives α= exp(−θ/2)=A+Bx+C(x2+
y2), where A=A0+B0 and B = 2(B0C)1/2. Thus, we obtain 8AC−2B2 = δ.
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Case 3 of Theorem 2.1. Let P(z) = λ2/4, α1 = (A/2)1/2 exp(λz/2), and α2 =
(A/2)1/2 exp(−λz/2), where A and λ are real constants. Thus, α = exp(−θ/2) =
Acoshλx with 2λ2A2 = δ.

Case 4 of Theorem 2.1. Let P(z) = −λ2/4, α1 = (A/2)1/2 exp(iλz/2), and α2 =
(A/2)1/2 exp(iλz/2), where A and λ are real constants. Hence, α = exp(−θ/2) =
Acoshλy with 2λ2A2 = δ.

Case 5 of Theorem 2.1. Let P(z) = λ2/4, α1 = (A+B)1/2 sinh(λz/2), and α2 =
(A−B)1/2 cosh(λz/2), where A, B, and λ are real constants. Therefore, α= exp(−θ/2)
=Acoshλx−B cosλy with 2λ2(A2−B2)= δ.

Case 6 of Theorem 2.1. Let P(z) = −λ2/4, α1 = (A+B)1/2 sin(λz/2), and α2 =
(A−B)1/2 cos(λz/2), whereA, B, and λ are real constants. Therefore,α= exp(−θ/2)=
Acoshλy−B cosλx with 2λ2(A2−B2)= δ.
Finally, the other choices of α1 and α2 for some other possibilities of P(z) that we

try in Remark 2 do not satisfy the conditions of Theorem 2.1. Thus, the first part of the
Theorem is proved. The ‘furthermore’ part is easily verified by direct computations.
This completes the proof of the theorem.

Theorem 2.2. Suppose that θ = Φ(f (x+y)+g(x−y)) is a nonconstant real solu-
tion of (1.1). Then for δ > 0, there exists some real constants A, B, C , and λ such that θ
has at least the following six forms:

θ =−2ln[A+B(x+y)2+B(x−y)2] provided 16AB = δ, (2.21)

θ =−2ln[A+B(x+y)+C(x+y)2+C(x−y)2] provided 16AC = 4B2+δ
(also, θ =−2ln[A+B(x−y)+C(x−y)2+C(x+y)2] provided 16AC = 4B2+δ,

and θ =−2ln[A+B(x+y)+C(x+y)2+B(x−y)+C(x−y)2]
provided 16AC = 8B2+δ),

(2.22)

θ =−2ln[Acoshλ(x+y)] provided 4λ2A2 = δ, (2.23)

θ =−2ln[Acoshλ(x−y)] provided 4λ2A2 = δ, (2.24)

θ =−2ln[Acoshλ(x+y)−B cosλ(x−y)] provided 4λ2
(
A2−B2)= δ,

(2.25)

θ =−2ln[Acoshλ(x−y)−B cosλ(x+y)] provided 4λ2
(
A2−B2)= δ.

(2.26)

Moreover, each of these cases gives a solution of the form Φ(f (x+y)+g(x−y)).
Proof. Let ξ = x+y and η= x−y . Then (1.1) reduces to

∂2θ
∂ξ2

+ ∂
2θ
∂η2

+ δ
2
exp(θ)= 0. (2.27)

The general solution of (2.27) follows easily by exploiting Theorem 2.1 and this implies
the conclusion of the theorem.
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3. Nonlinear wave equation in two variables. It is easy to show that θ(x,y) is a
solution of the wave equation in two variables if and only if θ(x,iy) is a solution of
the Laplace equation in two variables. Hence, since Theorems 2.1 and 2.2 are purely
formal, we have the following results, with no need for further proofs.

Theorem 3.1. Suppose that θ(x,y)= Φ(F(x)+G(y)) is a nonconstant solution of

θxx−θyy+δexp(θ)= 0. (3.1)

Then for δ > 0, there exists some real constants A, B, C , D, and λ such that θ has at
least the following six forms:

θ =−2ln[A+B(x2−y2)] provided 8AB = δ, (3.2)

θ =−2ln[A+Bx+C(x2−y2)] provided 8AC = 2B2+δ(
also, θ =−2ln[A+By+C(x2−y2)] provided 8AC+2B2 = δ,
and θ =−2ln[A+Bx+Cy+D(x2−y2)] provided 8AD+2C2 = 2B2+δ),

(3.3)

θ =−2ln[Acoshλx] provided 2λ2A2 = δ, (3.4)

θ =−2ln[Acosλy] provided 2λ2A2 = δ, (3.5)

θ =−2ln[Acoshλx−B coshλy] provided 2λ2
(
A2−B2)= δ, (3.6)

θ =−2ln[Acoshλy−B cosλx] provided 2λ2
(
A2−B2)= δ. (3.7)

In addition, each of these cases gives a solution of the form Φ(F(x)+G(y)).
Theorem 3.2. Suppose that θ(x,y) = Φ(f (x+ iy)+g(x− iy)) is a nonconstant

real solution of

θxx−θyy+δexp(θ)= 0. (3.8)

Then, for δ > 0, there exists real constants A, B, C , and λ such that θ has at least the
following six forms.

θ =−2ln[A+B(x+iy)2+B(x−iy)2] provided 16AB = δ, (3.9)

θ=−2ln[A+B(x+iy)+C(x+iy)2+B(x−iy)+C(x−iy)2]
provided 16AC = 8B2+δ, (3.10)

θ =−2ln[Acoshλ(x+iy)] provided 4λ2A2 = δ, (3.11)

θ =−2ln[Acoshλ(x−iy)] provided 4λ2A2 = δ, (3.12)

θ =−2ln[Acoshλ(x+iy)−B cosλ(x−iy)] provided 4λ2
(
A2−B2)= δ, (3.13)

θ =−2ln[Acoshλ(x−iy)−B cosλ(x+iy)] provided 4λ2
(
A2−B2)= δ. (3.14)

Moreover, each of (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14) is a solution of the form
Φ(f (x+iy)+g(x−iy)).
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4. Remarks

Remark 1. In the case of δ < 0, which corresponds to the situation of endothermic
reaction, Theorems 2.1 and 2.2 can be suitably modified.

Remark 2. Finally, it remains to verify that the structures of α1 and α2 for other
choices of P(z) are not in accordance with the statements of the theorems:
(a) It is well known from the theory of ordinary differential equations that for the

case where P(z) is a complex number (say P(z)= 2λ2i),

α1 =Aexp
(
λ(1+i)z) and α2 = B exp

(−λ(1+i)z). (4.1)

It is evident that α �= F(x)+G(y).
(b) The nature of the solution for the case where P(z) is periodic (the general

Mathieu’s equation, Schrödinger equation, or any linear differential equation with peri-
odic coefficient which are one-valued functions of z like the Hill’s types) is established
in the results known as Floquet’s and Bloch’s theorems (see [6] for details). However
the simple case α′′−(2sec2z)α= 0 leads to α1 =A(1+z tanz) and α2 = B tanz which
invariably does not conform to the statements of Theorem 2.1.
(c) Application of Fuch’s theorem to the case of P(z) = K(z−z0)−n (n ≥ 3), where

K and z0 are constants, clearly shows that a solution of the form α= Σan(z−z0)q+n
cannot exist at singular points z0. Nevertheless, this theorem guarantees the conver-
gence of solutions for the case n = 2 (i.e., Euler’s equation) and n = 1 but definitely
not of the required form. Observe that for the case n= 2, if

(i) K = 1/4, then α1 =Az1/2 and α2 = B(lnz)z1/2.
(ii) K > 1/4, then α1 = Azλ cos(µ lnz) and α2 = Bzλ sin(µ lnz), where λ and µ are

real constants.
(iii) K < 1/4, then α1 =Azr and α2 = Bzp with r and p being real numbers.
(d) It is often possible to transform a differential equation with variable coefficients

into a Bessel equation of a certain order by a suitable change of variables. For example,
it is easy to show that a solution of

z2α′′ +
(
p2β2z2β+ 1

4 −ν2β2
)
α= 0, z > 0 (4.2)

is given by α= z1/2f(pzβ), where f(η) is a solution of the Bessel equation of order ν .
Using this result, we can show that the general solution of the Airy’s equation α′′ −
zα= 0, z > 0, is α1 =Az1/2f1((2/3)iz3/2) and α2 = Bz1/2f2((2/3)iz3/2), where f1(η)
and f2(η) are linearly independent solutions of the Bessel equation of order one-
third. Note also that U(z) satisfies the Hermite differential equation if and only if
α = exp(−z2/2)U satisfies α′′ + (λ+ 1− z2)α = 0. Hence, for P(z) is a polynomial
in z, the pair of functions α1 and α2 clearly will not lead to the required separation
of variables needed in Theorem 2.1.
(e) It suffices to say that the case of P(z) is a continuous function leads to two

linearly independent convergent power series solutions in powers of z which are not
of closed-form in nature (see [2]).
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(f) Another important possibility of P(z) is obtained by using the notation of elliptic
functions which gives rise to Lamé’s equation when

P(z)=n(n+1)�(z)+B (4.3)

with

�(z)= 1
sn2(z : k)

− (1+k
2)

3
k �= 0 and k �= 1. (4.4)

If z = 2V and α= [�′(V)]−nL, then Lamé’s equation is transformed into

d2L
dV 2

−2n�′′(V)
�′(V)

dL
dV

+4{n(2n−1)�′(V)−B}L= 0. (4.5)

It is easy to show that if n= 1/2 and B = 0, we obtain

α1 =A0
{

�′
(
1
2z
)}−1/2

�
(
1
2z
)

and α2 = B0
{

�′
(
1
2z
)}−1/2

, (4.6)

where A0 and B0 are arbitrary constants. However, if B �= 0, then the constant B is
determined by the condition that Lamé’s equation should have a solution in the form
of a polynomial in �(z) or in the form of a product of this polynomial and a factor
of the form

√
�(z)−e1,

√
�(z)−e2,

√
�(z)−e3 , where e1+e2+e3 = 0 (see [8]). Further

investigation reveals that if

P(z)= 1
4

(
2

sn2(z/2 : k)
−1−k2

)
, (4.7)

then

α1 = (A0+B0)1/2√
ksn(z/2 : k)

(4.8)

and

α2 = (A0−B0)1/2
k3/2sn(z/2 : k)

[
z
2
−E

(
z
2
: k
)]

(4.9)

with 2(A20−B20)= k4δ, where E(u : k) is the fundamental elliptic integral of the second
kind. It is well known that E(u : k) is not doubly periodic and it has been established
that no algebraic relation can exist connecting them with sn(u : k), cn(u : k), and
dn(u : k) [10]. Nevertheless, it is observed that if A0 = B0 = 1/2, then we obtain the
limiting case δ= 0 and

α= 1
ksn(z/2 : k)sn(z/2 : k)

= coth
(
1
2
ln
{
1+ksn(z/2 : k)sn(z/2 : k)
1−ksn(z/2 : k)sn(z/2 : k)

})

= coth
(
1
2
ln
{
dn((z+z)/2 : k)−kcn((z+z)/2 : k)
dn((z−z)/2 : k)−kcn((z−z)/2 : k)

})

= coth
(
(A(x)+B(y))

2

)
,

(4.10)

where A(x) = ln[dn(x : k)−kcn(x : k)] and B(y) = − ln[dn(iy : k)−kcn(iy : k)].
Therefore, θ =−2ln[coth((A(x)+B(y))/2)] and [7, Thm. 1, eq. (1.5)] follows imme-
diately. It is clear that the solutions related to elliptic functions do not conform to the
statement of Theorem 2.1.
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