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CONVEX ISOMETRIC FOLDING
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ABSTRACT. We introduce a new type of isometric folding called “convex isometric folding.”
We prove that the infimum of the ratio VolN/ Vol @ (N) over all convex isometric foldings
@ :N — N, where N is a compact 2-manifold (orientable or not), is 1/4.
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1. Introduction. A map @ : M — N, where M and N are C* Riemannian manifolds
of dimensions m and n, respectively, is said to be an isometric folding of M into N if
and only if for any piecewise geodesic path y : J — M, the induced path oy :J — Nis
a piecewise geodesic and of the same length. The definition is given by Robertson [4].
The set of all isometric foldings @ : M — N is denoted by $(M,N).

Let p : M — N be a regular locally isometric covering and let G be the group of
covering transformations of p. An isometric folding ¢ € $(M) is said to be p-invariant
if and only if for all g € G and all x € X, p(p(x)) = p(@(g,x)). See Robertson and
Elkholy [5]. The set of p-invariant isometric foldings is denoted by $;(M, p).

DEFINITION 1.1. Let ¢ € $(M,N), where M and N are C® Riemannian manifolds
of dimensions m and n, respectively. We say that @ is a convex isometric folding if
and only if @ (M) can be embedded as a convex set in R".

We denote the set of all convex isometric foldings of M into N by C(M,N), and if
C(M,N) =+ @, then it forms a subsemigroup of $(M,N).

DEFINITION 1.2. We say that @ € $;(M, p) is a p-invariant convex isometric folding
if and only if @ (M) can be embedded as a convex set in R™.

We denote the set of p-invariant convex isometric foldings of M by C;(M,p). If
Ci(M,p) + 0, then for any covering map, p : M — N, C;(M,p) is a subsemigroup
of C(M).

To solve our main problem we need the following:

(1) Robertson and Elkholy [5] proved that if N is an n-smooth Riemannian manifold,
p :M — N is its universal covering, and G is the group of covering transformations of
p, then $(N) is isomorphic as a semigroup to $;(M,p)/G.

(2) Elkholy [1] proved that if N is an n-smooth Riemannian manifold, p : M — N is
its universal covering, and @ € $(N) such that @ : 171y (N) — 111 (N) is trivial, then the
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corresponding folding ¢ € $;(M, p) maps each fiber of p to a single point.
(3) Elkholy and Al-Ahmady [3] proved that under the same conditions of (2), if N is
a compact 2-manifold, then

VoIN  VolF
Volp(N) ~ Voly(F)’

(1.1)

where F is a fundamental region of G in M.

2. Convex isometric folding and covering spaces. The next theorem establishes
the relation between the set of convex isometric folding of a manifold, C(N), and the
set of p-invariant convex isometric folding of its universal covering space, C; (M, p).

THEOREM 2.1. Let N be a manifold and p : M — N its universal covering. Let G be
the group of covering transformations of p. If C(N) + 0, then C(N) is isometric as a
semigroup to C;(M,p)/G.

PROOF. Let C(N) # @. Then by using (1), there exists an isomorphism f from
$:(M,p)/G into $(N). Since C;(M,p) is a subsemigroup of $;(M,p), C;(M,p)/G is a
subsemigroup of $;(M,p)/G.

Let h = f| (C;(M,P)/G). Since C;(M,p)/G is a semigroup, h is a homeomorphism
and also it is one-one. To show that h is an onto map, we suppose that ¢ € C(N).
Hence, @ € $(N) and, consequently, there exists ¢ € $;(M,p)/G. Since @ € C(N),
@ is trivial and hence for all x € M, ¢ (G,x) = ¢ (x), and therefore ¢ € C;(M,p)/G.

O

THEOREM 2.2. Let N be a compact orientable 2-manifold and consider the universal
covering space (R?,P) of N. Let ¢ € C(N) and ¢ € C;(R?,p). Then for all x, y € R?,
ad(y(x),p(y)) <A, where A is the radius of a fundamental region for the covering
space.

PROOF. Elkholy [1] proved the truth of the theorem for N = S2. So, we have to
prove it for the connected sum of n-tori. First, let N = T be a torus homomorphic to

the quotient space obtained by identifying opposite sides of a square of length “a” as
shown in Figure 1(a)
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Suppose that @ : T — T is a convex isometric folding. Then @, (11, (T)) is trivial. By
Theorem 2.1, there exists a convex isometric folding  : R — R? such that for all x,
ycR2andforallg € G, p(p(x)) = p(yp(g,x)). Equivalently, for all (P,Q) € R? and
for all g € Z x Z, there exists a unique h € Z x Z such that ho ¢ (P,Q) = ¢(g(P,Q)),
ie.,

Y(P,Q)+ (x/EAm,\/?An’) = (p(P +ﬁAm,Q+ﬁAn>, where m,n,m’,n’ € Z.
(2.1)

Consider any fundamental region F of the covering space (R?,p) of T, i.e., a closed
square of length “a” with sides identified as shown in Figure 1(b). Since @, is trivial,
by (2), for all x € R%, ¢(G,x) = @(x). Now, let x and y be distinct points of R? such
that x =g-y for all g € G and let d(x,y) = ;. Then there exists a point x* = g- x
such that

d(y,x*) =min(c;), o =d(y,gi,x), i=1,...,4. (2.2)

Thus, there are always four equivalent points g; - x, i = 1,...,4 which form the ver-
tices of a square of length “a” and such that d(g; - x,y) < 2A. From Figure 1(b), it
is clear that maxd(x*,y) < A and since  is an isometric folding, by Robertson [4],
d(p(x),p(y)) <d(x,y),ie.,

A(wx),p () =d(gi-x),@(¥)) <d(gi-x,y) =d(x,y) <A, (2.3)

and this proves the theorem for N = T.

Now, consider the connected sum of two tori, obtained as a quotient space of an
octagon with sides identified as shown in Figure 2(a). The group of covering transfor-
mations G is isometric to Z X Z X Z x Z. Using the same previous technique, we can
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FIGURE 2.
obtain four equivalent points as the vertices of a square of diameter 2A such that

maxd(y,x*) < A, and the result follows. This theorem, by using the above method,
is true for the connected sum of n-tori. O
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THEOREM 2.3. Let N be a compact nonorientable 2-manifold and consider the uni-
versal covering space (M,p) of N. Let ¢ € C(N) and ¢ € C;(M,p). Then for all
x,y €M, d(p(x),p(y)) <A, where A is the radius of a fundamental region for the
covering space.

PROOF. By Elkholy [2], the theorem is true for N = p? and M = S2. Now, consider
the connected sum of two projective planes, the Klein bottle K, homeomorphic to the
quotient space obtained by identifying the opposite sides of a square as shown in
Figure 3(a).
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Suppose that @ : K — K is a convex isometric folding. Then there exists a convex
isometric folding  : R? — R? such that forall x e RZ and g € G, p(@(x)) = p(Y(g -
x)). Equivalently, for all (P,Q) € R? and for all g € Z x Z,, there exists a unique
h €Zx1Z; such that how(P,Q) = ¢(g(P,Q)), i.e.,

Lp(P,Q)+(\fZAm',\/§An’>

(2.4)
= (P +vV2Am,\2An+ (-)™Q), where m,n,m’,n’ €Z.

Any fundamental region F of the covering space (R2,p) of K is a closed square of
diameter 2A with the boundary identified as shown in Figure 3(b). Since @ is trivial,
forall x e R, y(G-x) = Y(x).

Now, let x and v be distinct points of R? such that y = g - x for all g € G, and let
d(x,y) = «y. Thus, there exists a point x* = g - x such that

d(y,x*) =min(«;), o =d(y,gi-x), i=1,...,4. (2.5)

Thus, there are always four equivalent points g; - x which form the vertices of a par-
allelogram such that the shortest diameter is of length less than 2A.

Now, the point v is either inside or on the boundary of a triangle of vertices g, - x =
X, g2 - X, g3 - xX. Let ' be a point equidistant from the vertices of this triangle, i.e.,

a(y',x)=d(y',g2-x) =d(y', 93 x). (2.6)
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From Figure 3(b), it is clear that d(y’,x) < A and, hence, d(x*,y) < A. Therefore,

Ad(wx),p()=d(gi-x),w(y)) <d(g-xi,y) =d(x*,y) <A  (2.7)

and the result follows.

Now, let N be the connected sum of three projective planes obtained as the quotient
space of a hexagon with the sides identified in pairs as indicated in Figure 4(a). In this
case, (R?,p) is the universal cover of N and G = Zx Z x Z,. Using the same method as
that used above, we can always have equivalent points g; - x, i = 1,...,4 which form
the vertices of a parallelogram whose shortest diameter is of length less than 2A. From
Figure 4(b), we can see that maxd(y,x*) < A and the theorem is proved.

In general and by using the same technique, the theorem is also true for the con-
nected sum of n-projective planes. O
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3. Volume and convex folding. The following theorem succeeds in estimating the
maximum volume we may have if we convexly folded a compact 2-manifold into itself.

THEOREM 3.1. The infimum of the ratio

VolN

~ Vol@(N)’ G-h

en
where N is a compact 2-manifold over all convex isometric foldings @ € C(N) of degree
zero, is 4.

PROOF. Robertson [4] has shown that if N is a compact 2-manifold, and ¢ : N - N
is a convex isometric folding, any convex isometric folding is an isometric folding,
then deg@ is +1 or 0. We consider only the case for which deg @ is zero otherwise
@ (N) cannot be embedded as a convex subset of R? unless N is. In this case, the set of
singularities of @ decomposes N into an even number of strata, say k, each of which
is homeomorphic to ¢ (N) and, hence,

VolN = kVol@(N), 3.2)
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that is, ey should be an even number. To calculate the exact value of ey, consider first
an orientable 2-compact manifold N. By using (1.1)

Vol F

- Vol (F) 3-3)

en

and this means that ey can be calculated by calculating the volume of F and of its
image @ (F), but F is a closed square of diameter 2A and @ (F) is a closed subset of
F such that the distance d(x,x’) between any two points x, x’ € @ (F) is at most A.
The supremum of 2-dimensional volume of such set is ¢(A/2)? and, hence, 2 < ey.
But ey is an even number. Hence, ey = 4.

Now, let N be a nonorientable 2-compact manifold, i.e.,, a connected sum of n-
projective planes. Elkholy [2] proved the theorem for n = 1.

The fundamental region in this case is a square or a rectangle of diameter 2A ac-
cording to whether n is even or odd. If n is an even number, then

VOIF = 2A? (3.4)

and the result follows. Now, let n be an odd number. Then F is a rectangle of lengths
(n+1)/2)a, ((n—1)/2)a and hence

_ 2 _
2 am+1)/2 an-1)/2 _n°-1,,, 3.5)

VOlF = 4A%sin0cos 0 = 4A = — .
moee avn2+1)/2a/n2+1)/2 n2+1

Therefore, ey > 2 for all n > 1. Since ey is an even number, ey = 4. O
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