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Abstract. We consider new weak and stronger forms of irresolute and semi-closure via
the concept sg-closed sets which we call ap-irresolute maps, ap-semi-closed maps and
contra-irresolute and use it to obtain a characterization of semi-T1/2 spaces.
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1. Introduction. The concept of a semi-generalized closed set (written in short as
sg-closed set) of a topological space was introduced by Bhattacharyya and Lahiri [2].
These sets were also considered by various authors (e.g., Sundaram, Maki and Bal-
achandran [15], Caldas [4] and Dontchev and Maki [9]).
In this paper, we introduce the concept of irresoluteness called ap-irresolute maps

and ap-semi-closed maps by using sg-closed sets and study some of their basic prop-
erties. This definition enables us to obtain conditions under which maps and inverse
maps preserve sg-closed sets. Also, in this paper, we present a new generalization of
irresoluteness called contra-irresolute. We define this last class of map by the require-
ment that the inverse image of each semi-open set in the codomain is semi-closed in
the domain. This notion is a stronger form of ap-irresoluteness. Finally, we also charac-
terize the class of semi-T1/2 spaces in terms of ap-irresolute and ap-semi-closed maps.
Throughout this paper, (X,τ), (Y ,σ), and (Z,γ) represent nonempty topological

spaces on which no separation axioms are assumed, unless otherwise mentioned. For
a subset A of a space (X,τ), Cl(A), and Int(A) denote the closure of A and the interior
of A, respectively.

2. Preliminaries. Since we require the following known definitions, notations, and
some properties, we recall them in this section.

Definition 2.1. A subset A of a space (X,τ) is said to be semi-open [11] if there
exists O ∈ τ such that O ⊆ A ⊆ Cl(O). The semi-interior [6] of A denoted by sInt(A),
is defined by the union of all semi-open sets of (X,τ) contained in A.

Remark 2.2. (i) A subset A is semi-open [6] if and only if sInt(A)=A.
(ii) sInt(A)=A∩Cl(Int(A)) [10].
By SO(X,τ) we mean the collection of all semi-open sets in (X,τ).

Definition 2.3. A subset B of (X,τ) is said to be semi-closed [3] if its comple-
ment Bc is semi-open in (X,τ). The semi-closure [3] of a set B of (X,τ) denoted by
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sClX(B), briefly sCl(B), is defined to be the intersection of all semi-closed sets of (X,τ)
containing B.

Remark 2.4. (i) A subset B is semi-closed [13] if and only if sCl(B)= B.
(ii) sCl(B)= B∪ Int(Cl(B)) [10].
Definition 2.5. Amap f : (X,τ)→ (Y ,σ) is called irresolute [7] if f−1(O) is semi-

open in (X,τ) for every O ∈ SO(Y ,σ).
Definition 2.6. A map f : (X,τ) → (Y ,σ) is called pre-semi-closed (resp., pre-

semi-open) [7] if for every semi-closed (resp., semi-open) set B of (X,τ), f(B) is semi-
closed (resp., semi-open) in (Y ,σ).

Definition 2.7. A subset F of (X,τ) is said to be semi-generalized closed (written
in short as sg-closed) in (X,τ) [2] if sCl(F) ⊆ O whenever F ⊆ O and O is semi-open
in (X,τ). A subset B is said to be semi-generalized open (written as sg-open) in (X,τ)
[2] if its complement Bc =X−B is sg-closed in (X,τ).

3. Ap-irresolute, ap-semi-closed and contra-irresolute maps. Let f : (X,τ) →
(Y ,σ) be a map from a topological space (X,τ) into a topological space (Y ,σ).

Definition 3.1. A map f : (X,τ)→ (Y ,σ) is said to be approximately irresolute
(or ap-irresolute) if sCl(F)⊆ f−1(O) whenever O is a semi-open subset of (Y ,σ), F is
a sg-closed subset of (X,τ), and F ⊆ f−1(O).

Definition 3.2. A map f : (X,τ)→ (Y ,σ) is said to be approximately semi-closed
(or ap-semi-closed) if f(B)⊆ sInt(A) whenever A is a sg-open subset of (Y ,σ), B is a
semi-closed subset of (X,τ), and f(B)⊆A.

Clearly irresolute maps are ap-irresolute and pre-semi-closed maps are ap-semi-
closed, but not conversely.
The proof follows from Definition 3.1 and [2, Def. 1] (resp., Definition 3.2 and [2,

Thm. 6]).
The following example shows the converse implications do not hold.

Example 3.3. Let X = {a,b} be the Sierpinski space with the topology, τ = {�,{a},
X}. Let f : X → X be defined by f(a) = b and f(b) = a. Since the image of every
semi-closed set is semi-open, then f is ap-semi-closed (similarly, since the inverse
image of every semi-open set is semi-closed, then f is ap-irresolute). However {b} is
semi-closed in (X,τ) (resp., {a} is semi-open) but f({b}) is not semi-closed (resp.,
f−1({a}) is not semi-open in (X,τ)). Therefore f is not pre-semi-closed (resp., f is
not irresolute).

Theorem 3.4. (i) f : (X,τ)→ (Y ,σ) is ap-irresolute if f−1(O) is semi-closed in (X,τ)
for every O ∈ SO(Y ,σ).
(ii) f : (X,τ) → (Y ,σ) is ap-semi-closed if f(B) ∈ SO(Y ,σ) for every semi-closed

subset B of (X,τ).

Proof. (i) Let F ⊆ f−1(O), whereO ∈ SO(Y ,σ) and F is a sg-closed subset of (X,τ).
Therefore sCl(F)⊆ sCl(f−1(O))= f−1(O). Thus f is ap-irresolute.
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(ii) Let f(B) ⊆ A, where B is a semi-closed subset of (X,τ) and A is a sg-open
subset of (Y ,σ). Therefore sInt(f (B)) ⊆ sInt(A). Then f(B) ⊆ sInt(A). Thus f is ap-
semi-closed.

This theorem was used in Example 3.3.

Remark 3.5. Let (X,τ) denote the topological space defined in Example 3.3. Then
the identity map on (X,τ) is both ap-irresolute and ap-semi-closed, it is clear that the
converses of Theorem 3.4 do not hold.
In the following theorem, we get under certain conditions that the converse of

Theorem 3.4 is true.

Theorem 3.6. Let f : (X,τ)→ (Y ,σ) be a map from a topological space (X,τ) in a
topological space (Y ,σ).
(i) If the semi-open and semi-closed sets of (X,τ) coincide, then f is ap-irresolute if

and only if f−1(O) is semi-closed in (X,τ) for every O ∈ SO(Y ,σ).
(ii) If the semi-open and semi-closed sets of (Y ,σ) coincide, then f is ap-semi-closed

if and only if f(B)∈ SO(Y ,σ) for every semi-closed subset B of (X,τ).

Proof. (i) Assume f is ap-irresolute. Let A be an arbitrary subset of (X,τ) such
that A⊆Q, where Q∈ SO(X,τ). Then by hypothesis sCl(A)⊆ sCl(Q)=Q. Therefore
all subsets of (X,τ) are sg-closed (and hence all are sg-open). So, for anyO ∈ SO(Y ,σ),
f−1(O) is sg-closed in (X,τ). Since f is ap-irresolute sCl(f−1(O))⊆ f−1(O). Therefore
sCl(f−1(O))= f−1(O), i.e., f−1(O) is semi-closed in (X,τ).
The converse is clear by Theorem 3.4.
(ii) Assume f is ap-semi-closed. Reasoning as in (i), we obtain that all subsets of

(Y ,σ) are sg-open. Therefore for any semi-closed subset of B of (X,τ), f(B) is sg-
open in Y . Since f is ap-semi-closed f(B)⊆ sInt(f (B)). Therefore f(B)= sInt(f (B)),
i.e, f(B) is semi-open. The converse is clear by Theorem 3.4.

As immediate consequence of Theorem 3.6, we have the following.

Corollary 3.7. Let f : (X,τ)→ (Y ,σ) be a map from a topological space (X,τ) in
a topological space (Y ,σ).
(i) If the semi-open and semi-closed sets of (X,τ) coincide, then f is ap-irresolute if

and only if f is irresolute.
(ii) If the semi-open and semi-closed sets of (Y ,σ) coincide, then f is ap-semi-closed

if and only if f is pre-semi-closed.

A map f : (X,τ) → (Y ,σ) is called contra-irresolute if f−1(O) is semi-closed in
(X,τ) for each O ∈ SO(Y ,σ), and contra-pre-semi-closed if f(B)∈ SO(Y ,σ) for each
semi-closed set B of (X,τ).

Remark 3.8. In fact, contra-irresoluteness and irresoluteness are independent no-
tions. Example 3.3 shows that contra-irresoluteness does not imply irresoluteness
while the reverse is shown in the following example.

Example 3.9. An irresolute map need not be contra-irresolute. The identity map
on the topological space (X,τ) where τ = {�,{a},X} is an example of an irresolute
map which is not contra-irresolute.
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In the same manner, we can prove that contra-pre-semi-closed maps and pre-semi-
closed are independent notions.
The following result can be easily verified. Its proof is straightforward.

Theorem 3.10. Let f : (X,τ)→ (Y ,σ) be a map. Then the following conditions are
equivalent:
(i) f is contra-irresolute.
(ii) The inverse image of each semi-closed set in Y is semi-open in X.

Remark 3.11. By Theorem 3.4, we have that every contra-irresolute map is ap-
irresolute and every contra-pre-semi-closed is ap-semi-closed, the converse implica-
tion do not hold.

A map f : (X,τ)→ (Y ,σ) is called perfectly contra-irresolute if the inverse of every
semi-open set in Y is semi-clopen in X. Hence, every perfectly contra-irresolute map
is contra-irresolute and irresolute.
Clearly, the following diagram holds and none of its implications is reversible:

contra-irresolute

���������������

Perfectly contra-irresolute

������������������

������������������ ap-irresolute.

irresolute

���������������

(3.1)

The next two theorems establish conditions under which maps and inverse maps
preserve sg-closed sets.
Sundaram, Maki and Balachandran in [15, Thm. 3.7] showed that the irresolute pre-

semi-closed inverse image of a sg-closed set is sg-closed. We strengthen this result
slightly by replacing the pre-semi-closed requirement with ap-semi-closed.

Theorem 3.12. If a map f : (X,τ)→ (Y ,σ) is irresolute and ap-semi-closed, then
f−1(A) is sg-closed (resp., sg-open) whenever A is sg-closed (resp., sg-open) subset of
(Y ,σ).

Proof. Let A be a sg-closed subset of (Y ,σ). Suppose that f−1(A) ⊆ O where
O ∈ SO(X,τ). Taking complements we obtain Oc ⊆ f−1(Ac) or f(Oc) ⊆ Ac . Since
f is an ap-semi-closed and sInt(A) = A∩ Cl(Int(A)) and sCl(A) = A∪ Int(Cl(A)),
then f(Oc) ⊆ sInt(Ac) = (sCl(A))c . It follows that Oc ⊆ (f−1(sCl(A)))c and hence
f−1(sCl(A)) ⊆ O. Since f is irresolute f−1(sCl(A)) is semi-closed. Thus we have
sCl(f−1(A)) ⊆ sCl(f−1(sCl(A))) = f−1(sCl(A)) ⊆ O. This implies that f−1(A) is sg-
closed in (X,τ). A similar argument shows that inverse images of sg-open are sg-open.

This is known (see [15]) that the semi-continuous pre-semi-closed image of a sg-
closed set is sg-closed. The following theorem test this result replacing the semi-
continuous requirement with ap-irresolute.
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Theorem 3.13. If a map f : (X,τ) → (Y ,σ) is ap-semi-irresolute and pre-semi-
closed, then for every sg-closed F of (X,τ), f(F) is sg-closed set of (Y ,σ).

Proof. Let F be a sg-closed subset of (X,τ). Let f(F) ⊆ O where O ∈ SO(Y ,σ).
Then F ⊆ f−1(O) holds. Since f is ap-irresolute sCl(F)⊆ f−1(O) and hence f(sCl(F))
⊆ O. Therefore, we have sCl(f (F)) ⊆ sCl(f (sCl(F))) = f(sCl(F)) ⊆ O. Hence f(F) is
sg-closed in (Y ,σ).

Now, reasoning as in [9], we obtain that the composition of two contra-irresolute
maps need not be contra-irresolute. Really, Let X = {a,b} be the Sierpinski space and
set τ = {�,{a},X} and σ = {�,{b},X}. The identity maps f : (X,τ)→ (X,σ) and g :
(X,σ)→ (X,τ) are both contra-irresolute but their composition g◦f : (X,τ)→ (X,τ)
is not contra-irresolute.
However the following theorem holds. The proof is easy and hence omitted.

Theorem 3.14. Let f : (X,τ) → (Y ,σ) and g : (Y ,σ) → (Z,γ) be two maps such
that g◦f : (X,τ)→ (Z,γ). Then,
(i) g◦f is contra-irresolute, if g is irresolute and f is contra-irresolute.
(ii) g◦f is contra-irresolute, if g is contra-irresolute and f is irresolute.
In an analogous way, we have the following.

Theorem 3.15. Let f : (X,τ) → (Y ,σ), g : (Y ,σ) → (Z,γ) be two maps such that
g◦f : (X,τ)→ (Z,γ). Then,
(i) g◦f is ap-semi-closed, if f is pre-semi-closed and g is ap-semi-closed.
(ii) g ◦ f is ap-semi-closed, if f is ap-semi-closed and g is pre-semi-open and g−1

preserves sg-open sets.
(iii) g◦f is ap-irresolute, if f is ap-irresolute and g is irresolute.

Proof. To prove statement (i), suppose B is an arbitrary semi-closed subset in
(X,τ) and A is a sg-open subset of (Z,γ) for which g ◦ f(B) ⊆ A. Then f(B) is
semi-closed in (Y ,σ) because f is pre-semi-closed. Since g is ap-semi-closed, g(f(B))
⊆ sInt(A). This implies that g◦f is ap-semi-closed.
To prove statement (ii), suppose B is an arbitrary semi-closed subset of (X,τ) and

A is a sg-open subset of (Z,γ) for which g ◦f(B) ⊆ A. Hence f(B) ⊆ g−1(A). Then
f(B)⊆ sInt(g−1(A)) because g−1(A) is sg-open and f is ap-semi-closed. Thus,

(g◦f)(B)= g
(
f(B)

)⊆ g
(
sInt

(
g−1(A)

))⊆ sInt(gg−1(A))⊆ sInt(A). (3.2)

This implies that g◦f is ap-semi-closed.
To prove statement (iii), suppose F is an arbitrary sg-closed subset of (X,τ) andO ∈

SO(Z,γ) for which F ⊆ (g◦f)−1(O). Then g−1(O)∈ SO(Y ,σ) because g is irresolute.
Since f is ap-irresolute, sCl(F) ⊆ f−1(g−1(O)) = (g ◦f)−1(O). This proves that g ◦f
is ap-irresolute.

As a consequence of Theorem 3.15, we have the following.

Corollary 3.16. Let fα : X → Yα be a map for each α ∈ Ω and f : X →∏
Yα the

product map given by f(x)= (fα(x)). If f is ap-irresolute, then fα is ap-irresolute for
each α.
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Proof. For each β let Pβ :
∏
Yα→ Yβ be the projection map. Then fβ = Pβ◦f , where

Pβ is irresolute. By Theorem 3.15(iii), fβ is ap-irresolute.

Regarding the restriction fA of a map f : (X,τ)→ (Y ,σ) to a subset A of X, we have
the following.

Theorem 3.17. (i) If f : (X,τ)→ (Y ,σ) is ap-semi-closed and A is a semi-closed set
of (X,τ), then its restriction fA : (A,τA)→ (Y ,σ) is ap-semi-closed.
(ii) If f : (X,τ)→ (Y ,σ) is ap-irresolute and A is an open, sg-closed subset of (X,τ),

then fA : (A,τA)→ (Y ,σ) is ap-irresolute.

Proof. (i) Suppose B is an arbitrary semi-closed subset of (A,τA) and O a sg-open
subset of (Y ,σ) for which fA(B) ⊆ O. By [12, Thm. 2.6] B is semi-closed of (X,τ)
because A is semi-closed of (X,τ). Then fA(B) = f(B) ⊆ O. Using Definition 3.2, we
have fA(B)⊆ sInt(O). Thus fA is an ap-semi-closed map.
(ii) Assume that F is a sg-closed subset relative to A, i.e., sg-closed in (A,τA), and

G is a semi-open subset of (Y ,σ) for which F ⊆ (fA)−1(G). Then F ⊆ f−1(G)∩A.
By [2, Thm. 3] F is sg-closed in X. Since f is ap-irresolute sC(F) ⊆ f−1(G). Then
sCl(F)∩A ⊆ f−1(G)∩A. Using the fact that sCl(F)∩A = sClA(F) for every pre-open
subset [14, Thm. 2.4], we have sClA(F) ⊆ (fA)−1(G). Thus fA : (A,τA)→ (Y ,σ) is ap-
irresolute.

Observe that restrictions of ap-semi-closed maps can fail to be ap-semi-closed.
Really, as in [1], let X be an indiscrete space. Then X and � are the only semi-open

subsets of X. Hence the semi-closed subsets of X are also X and �. Let A a nonempty
proper subset of X. The identity map f :X →X is ap-semi-closed, but fA :A→X fails
to be ap-semi-closed. In fact, f(A) is sg-open (every subset of X is sg-open) and A is
closed in A. Therefore semi-closed in (A,τA), but f(A)⊆ sInt(f (A)).

4. A characterization of semi-T1/2 spaces. In the following theorem, we give a
characterization of a class of topological space called semi-T1/2 space by using the
concepts of ap-irresolute maps and ap-semi-closed maps.
We recall that a topological space (X,τ) is said to be semi-T1/2 space [2], if every

sg-closed set is semi-closed.

Theorem 4.1. Let (X,τ) be a topological space. Then the following statements are
equivalent:
(i) (X,τ) is a semi-T1/2 space.
(ii) For every space (Y ,σ) and every map f : (X,τ)→ (Y ,σ), f is ap-irresolute.

Proof. (i) �⇒(ii): Let F be a sg-closed subset of (X,τ) and suppose that F ⊆ f−1(O),
whereO ∈ SO(Y ,σ). Since (X,τ) is a semi-T1/2 space, F is semi-closed (i.e., F = sCl(F)).
Therefore sCl(F)⊆ f−1(O). Then f is ap-irresolute.
(ii) �⇒(i): Let B be a sg-closed subset of (X,τ) and let Y be the set X with the topology

σ = {�,B,Y}. Finally let f : (X,τ) → (Y ,σ) be the identity map. By assumption f is
ap-irresolute. Since B is sg-closed in (X,τ) and semi-open in (Y ,σ) and B ⊆ f−1(B),
it follows that sCl(B) ⊆ f−1(B) = B. Hence B is semi-closed in (X,τ) and therefore is
semi-T1/2.
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Theorem 4.2. Let (Y ,σ) be a topological space. Then the following statements are
equivalent:
(i) (Y ,σ) is a semi-T1/2 space.
(ii) For every space (X,τ) and every map f : (X,τ)→ (Y ,σ), f is ap-semi-closed.

Proof. Analogous to Theorem 4.1 making the obvious changes.

We refer the reader to [2, 4, 5, 15] for other results on semi-T1/2 spaces.
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