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ABSTRACT. Certain locally convex spaces of scalar-valued mappings are shown to be finite-
dimensional.
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1. Introduction. Radenovic [6], generalizing a result of Iyahen [2], has shown that
if E is a Banach space and (E,o (E,E’)) (or (E',o (E’,E))) is a (DF)-space [1], then E is
finite-dimensional. His result has been extended to arbitrary locally convex spaces by
Krassowska and Sliwa [3].

In [4, 5], (DF)-spaces have been generalized as follows: a locally convex space (E, T)
is a (gDF)-space if

(a) (E,T) has a fundamental sequence (By)nen of bounded sets, and

(b) T is the finest locally convex topology on E that agrees with T on each B,,.
In this note, we prove that if an arbitrary vector space of scalar-valued mappings is
a (gDF)-space under the locally convex topology of pointwise convergence, then it is
finite-dimensional. As a consequence, the above-mentioned theorem of Krassowska
and Sliwa readily follows.

2. The result. Throughout this note, all vector spaces under consideration are vec-
tor spaces over a field K which is either R or C. In our result, F denotes an arbitrary
set and H denotes a subspace of the vector space of all mappings from E into K. We
consider on H the separated locally convex topology of pointwise convergence and
represent by H' the topological dual of H.

THEOREM 2.1. The following conditions are equivalent:
(a) H is a finite-dimensional vector space;
(b) H is a (DF)-space;
(c) H is a (gDF)-space.

PROOF. Itis clear that (a) implies (b) and (b) implies (c) (every (DF)-space is a (gDF)-
space).

Suppose that condition (c) holds. If H is infinite-dimensional, there exists a count-
able linearly independent subset {@,;n € N} of H'. Let (B,)nen be an increasing
fundamental sequence of bounded subsets of H. Then, (B)),cn is a decreasing se-
quence of neighborhoods of zero in (H’,Bf(H’,H)) forming a fundamental system


http://ijmms.hindawi.com
http://www.hindawi.com

368 RENATA R. DEL-VECCHIO ET AL.

of neighborhoods of zero in (H',f(H’,H)). For each n € N, fix an &, > 0 such that
0@y € BY; then (0t @) nen converges to zeroin (H', (H',H)). By [5, Theorem 1.1.7],
the set I' = {x,@n;n € N} is equicontinuous. Hence, there exist xi,...,X;, € E and
there exists an & > 0 such that the relations

feEH, [f(x1)] <oy | fxxm) ] < &, peT (2.1)

imply
l@(f)] <1 (2.2)

For each i = 1,...,m, let §; € H' be given by 6;(f) = f(x;) for f € H, and put F =
{61,...,0m}. We claim that I' C [F], where [F] is the finite-dimensional vector space
generated by F.Indeed, let ¢ € T and take an f € H suchthat6,(f) =--- =6m(f) =0.
Then, for all A € K,

[AS) (x| =161(Af) [ =0= e, [(Af) (xm) | = [6m(Af) | =0 < . (2.3)

Consequently, |@(Af)] = |A||@(f)] < 1. By the arbitrariness of A,@(f) = 0. By [7,
Lemma 5, Chapter II], ¢ € [F]. Therefore the vector space generated by the set
{®n;n € N} is finite-dimensional, which contradicts the choice of (¢ )nen. This com-
pletes the proof of the theorem. O

REMARK 2.2. The theorem of Krassowska and Sliwa mentioned at the beginning of
this note follows from Theorem 2.1. In fact, let E be a separated locally convex space.
If (E',o0(E',E)) is a (DF)-space, then E’ is finite-dimensional by Theorem 2.1, and so
E is finite-dimensional. Hence, E is finite-dimensional if (E,o (E,E’)) is a (DF)-space.
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