ALMOST AUTOMORPHIC SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS IN BANACH SPACES

GASTON MANDATA N'GUEREKATA

(Received 12 November 1997 and in revised form 2 March 1998)

ABSTRACT. We discuss the conditions under which bounded solutions of the evolution equation x'(t) = Ax(t) + f(t) in a Banach space are almost automorphic whenever f(t) is almost automorphic and A generates a C_0 -group of strongly continuous operators. We also give a result for asymptotically almost automorphic solutions for the more general case of x'(t) = Ax(t) + f(t,x(t)).

Keywords and phrases. Almost automorphic functions, mild solutions, generator of a C_0 -group, linear operators.

2000 Mathematics Subject Classification. Primary 34G10.

1. Introduction. Let A generate a C_0 -group of strongly continuous operators T(t), $t \in \mathbb{R}$ on a Banach space X. Let $f \in L^{\infty}(\mathbb{R};X)$. A basic unsolved problem is: what is the structure of bounded (on \mathbb{R}) mild solutions of x'(t) = Ax(t) + f(t)? Classically results go back to Ordinary Differential Equations (when dimension of X is finite), and one sought solutions x(t) such that $x(t) - y(t) \to 0$ as $t \to \infty$, when either y(t) is a constant or a periodic function of time. In the evolution context of x' = Ax + f, much has been written on asymptotically constant or periodic solutions. Several authors extended these ideas to almost periodic solutions (when f is almost periodic). Our main result (Theorem 1.6) is inspired by the interesting work of Goldstein [3]. We are actually concerned with the more general case of almost automorphic, and when bounded solutions are almost automorphic. We also give a new result (Theorem 1.7) concerning mild solutions of the equation x'(t) = Ax(t) + f(t, x(t)) which approach almost automorphic functions at infinity under specific conditions on the function f(t,x). See also [6] for another comparable situation.

Let X be a Banach space equipped with the topology norm and $\mathbb{R} = (-\infty, \infty)$ the set of real numbers. Let us first recall some definitions.

DEFINITION 1.1 (Bochner). A continuous function $f: \mathbb{R} \to X$ is said to be almost automorphic if and only if, from any sequence of real numbers $(s'_n)_{n=1}^{\infty}$, we can subtract a subsequence $(s_n)_{n=1}^{\infty}$ such that: $\lim_{n\to\infty} f(t+s_n) = g(t)$ exists for each real number t, and $\lim_{n\to\infty} g(t-s_n) = f(t)$ for each t.

DEFINITION 1.2 [4]. A continuous function $f: \mathbb{R}^+ \to X$ is said to be asymptotically almost automorphic if and only if there exists an almost automorphic function $g: \mathbb{R} \to X$ and a continuous function $h: \mathbb{R}^+ \to X$ with $\lim_{t\to\infty} \|h(t)\| = 0$ and such that f(t) = g(t) + h(t) for each $t \in \mathbb{R}^+$.

DEFINITION 1.3. A Banach space X is said to be perfect if and only if every bounded function $u : \mathbb{R} \to X$ with an almost automorphic derivative u'(t) is necessarily almost automorphic.

REMARK 1.4. Uniformly convex Banach spaces are nice examples of perfect Banach spaces (see [10, Theorem 1.4]).

We consider the evolution equation

$$x'(t) = Ax(t) + f(t), \quad t \in \mathbb{R}. \tag{1.1}$$

THEOREM 1.5. Let X be a perfect Banach space. Let A be a bounded linear operator $X \to X$ and $f : \mathbb{R} \to X$ an almost automorphic function. Then any bounded strong solution of (1.1) is almost automorphic if we assume that there exists a finite-dimensional subspace X_1 of X such that

- (α) $Ax(0) \in X_1$,
- (β) $(e^{tA}-I)f(s) \in X_1$ for any $s,t \in \mathbb{R}$,
- (γ) $e^{tA}u \in X_1$ for any $t \in \mathbb{R}$ and for any $u \in X_1$.

PROOF. Let P be the projection of X onto X_1 ; such P always exists (cf. [7]) and possesses the following properties:

- (1) $X = X_1 \oplus \ker(P)$, where $\ker(P)$ is the kernel of the operator P,
- (2) P is bounded on X.

If we put Q = I - P, then it is easy to verify that $Q^2 = Q$ on X and Qu = 0 for any $u \in X_1$. Now if x(t) is a bounded solution of (1.1), then we can write it as

$$x(t) = x_1(t) + x_2(t) \tag{1.2}$$

with $x_1(t) = Px(t) \in X_1$ and $x_2(t) = Qx(t) \in \ker(P)$.

Since x(t) is bounded on \mathbb{R} , it is clear that both $x_1(t)$ and $x_2(t)$ are also bounded on \mathbb{R} . On the other hand, we have

$$x'(t) = x_1'(t) + x_2'(t) = Ax_1(t) + Ax_2(t) + Pf(t) + Qf(t), \quad t \in \mathbb{R}.$$
 (1.3)

But x(t) has the well-known Lagrange representation:

$$x(t) = e^{tA}x(0) + \int_0^t e^{(t-s)A}f(s) ds$$

= $e^{tA}x(0) + \int_0^t f(s) ds + \int_0^t (e^{(t-s)A} - I)f(s) ds$. (1.4)

By assumption (β) , we deduce that $\int_0^t (e^{(t-s)A} - I) f(s) ds$ is in X_1 , so that if we apply Q to both sides of (1.4), we get

$$x_2(t) = Qe^{tA}x(0) + Q\int_0^t f(s) \, ds = Qe^{tA}x(0) + \int_0^t Qf(s) \, ds, \tag{1.5}$$

consequently

$$x_2'(t) = Qe^{tA}Ax(0) + Qf(t) = Qf(t)$$
 (1.6)

using conditions (α) and (γ).

It is clear that Qf(t) and thus $x_2'(t)$ is almost automorphic (see [9, page 586]). Since $x_2(t)$ is bounded, then it is almost automorphic for we are in a perfect Banach space. Now if we apply P to both sides of (1.3), we get in the finite-dimensional space X_1 the differential equation

$$x_1'(t) = PAx_1(t) + PAx_2(t) + P^2f(t) + POf(t), \quad t \in \mathbb{R}.$$
 (1.7)

Since the function $g(t) \equiv P^2 f(t) + PQf(t)$ is almost automorphic and PA is a bounded linear operator, we deduce that $x_1(t)$ is almost automorphic [9, Theorem 3]. Finally, x(t) is almost automorphic as the sum of two almost automorphic functions.

Theorem 1.5 can be generalized to the case of unbounded operator A as follows.

THEOREM 1.6. In a perfect Banach space X, let A generate a C_0 -group of strongly continuous linear operators T(t), $t \in \mathbb{R}$. Assume that there exists a finite-dimensional subspace X_1 of X such that:

- (α) $Ax(0) \in X_1$,
- (β') $(T(t)-I)f(s) \in X_1$ for any $s,t \in \mathbb{R}$,
- (y) $T(t)u \in X_1$ for any $t \in \mathbb{R}$ and any $u \in X_1$.

Then every bounded solution of (1.1) is almost automorphic.

PROOF. We just follow the proof of Theorem 1.5 with the appropriate modifications. Here solutions are written as $x(t) = T(t)x(0) + \int_0^t T(t-s)f(s)ds$.

We return now to a general (not necessarily perfect) Banach space X. We state and prove the following theorem.

THEOREM 1.7. Let A be a (possibly unbounded) linear operator which is the generator of a C_0 -group of strongly continuous linear operators T(t), $t \in \mathbb{R}$ such that $T(t)x : \mathbb{R} \to X$ is almost automorphic for each $x \in X$. Consider the differential equation

$$x'(t) = Ax(t) + f(t,x(t)),$$
 (1.8)

where $f(t,x): \mathbb{R} \times X \to X$ is strongly continuous with respect to jointly t and x and such that $||f(t,x)-f(t,y)|| \le L||x-y||$ for any $t \in \mathbb{R}$, $x,y \in X$, and $\int_0^\infty ||f(t,0)|| dt < \infty$.

Then every mild solution x(t) of (1.8) with $\int_0^\infty ||x(t)|| dt < \infty$ is asymptotically almost automorphic.

PROOF. Let $x : \mathbb{R}^+ \to X$ be a mild solution of (1.8). Then we have

$$x(t) = T(t)x(0) + \int_0^t T(t-s)f(s,x(s)) ds.$$
 (1.9)

We claim that $\int_0^\infty T(-s) f(s, x(s)) ds$ exists in X (in Bochner's sense). Indeed, since T(t) is almost automorphic for each $x \in X$, then

$$\sup_{t \in \mathbb{R}} ||T(t)x|| < \infty \quad \text{for each } x \in X.$$
 (1.10)

Consequently

$$\sup_{t\in\mathbb{R}}\|T(t)\|=M<\infty, \tag{1.11}$$

by the uniform boundedness principle. Let us write

$$\int_0^\infty T(-s)f(s,x(s))\,ds = \int_0^\infty T(-s)\big(f(s,x(s)) - f(s,0)\big)\,ds + \int_0^\infty T(-s)f(s,0)\,ds,\tag{1.12}$$

then we get the inequality

$$\left\| \int_0^\infty T(-s) f(s, x(s)) \, ds \right\| \le M \left(L \int_0^\infty \|x(s)\| \, ds + \int_0^\infty \|f(s, 0)\| \, ds \right) < \infty. \tag{1.13}$$

Now the continuous function $F : \mathbb{R} \to X$ defined by

$$F(t) = \int_0^\infty T(t-s)f(s,x(s)) \, ds = T(t) \int_0^\infty T(-s)f(s,x(s)) \, ds \tag{1.14}$$

is almost automorphic; therefore V(t) = T(t)x(0) + F(t) is also almost automorphic. Let us consider the continuous function $W : \mathbb{R}^+ \to X$

$$W(t) = -\int_{t}^{\infty} T(t-s)f(s,x(s)) ds.$$
 (1.15)

If we use the same computation as for F(t) in (1.14), we get

$$||W(t)|| \le M \left(L \int_{t}^{\infty} ||x(s)| ds|| + \int_{t}^{\infty} ||f(s,0)| ds|| \right)$$
 (1.16)

which shows that $\lim_{t\to\infty} ||W(t)|| = 0$.

Finally
$$x(t) = V(t) + W(t)$$
, $t \in \mathbb{R}^+$ is asymptotically almost automorphic.

REMARK 1.8. (1) An example of Theorem 1.5 (occurring in Sturm-Liouville theory, for instance) is when X is a Hilbert space and $A\varphi_n = \lambda_n \varphi_n$ for $\{\varphi_n : n = 1, 2, ...\}$ an orthonormal basis and $|\operatorname{Re}(\lambda_n)| \leq M$ for all n. For X_1 , one may take $X_1 = \operatorname{span}\{\varphi_1, ..., \varphi_N\}$ (for any N) and assume $f \in L^{\infty}(\mathbb{R}, X_1)$.

(2) An example of operator A satisfying the hypothesis of Theorem 1.7 is the above example with $A^* = -A$, i.e., M = 0.

ACKNOWLEDGEMENTS. The present research was supported by a research grant from Morgan State University. The author is very grateful to the referee for his/her useful suggestions.

REFERENCES

- [1] S. Bochner, Uniform convergence of monotone sequences of functions, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 582-585. MR 23#A3390. Zbl 103.05304.
- [2] ______, Continuous mappings of almost automorphic and almost periodic functions, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 907-910. MR 29#6252. Zbl 134.30102.
- [3] J. A. Goldstein, *Convexity, boundedness, and almost periodicity for differential equations in Hilbert space*, Internat. J. Math. Math. Sci. **2** (1979), no. 1, 1–13. MR 80e:34040. Zbl 397.34041.
- [4] G. M. N'Guérékata, Sur les solutions presqu'automorphes d'équations différentielles abstraites, Ann. Sci. Math. Québec 5 (1981), no. 1, 69-79. MR 82h:34085. Zbl 494.34045.

- [5] ______, Quelques remarques sur les fonctions asymptotiquement presque automorphes, Ann. Sci. Math. Québec 7 (1983), no. 2, 185–191. MR 84k:43009. Zbl 524.34064.
- [6] ______, An asymptotic theorem for abstract differential equations, Bull. Austral. Math. Soc. 33 (1986), no. 1, 139-144. MR 87c:34126. Zbl 581.34029.
- [7] M. Schechter, Principles of Functional Analysis, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1973. MR 57#7085.
- [8] W. A. Veech, Almost automorphic functions on groups, Amer. J. Math. 87 (1965), 719–751.MR 32#4469. Zbl 137.05803.
- [9] S. Zaidman, Almost automorphic solutions of some abstract evolution equations, Istit. Lombardo Accad. Sci. Lett. Rend. A 110 (1976), no. 2, 578–588 (1977). MR 58#6593.
 Zbl 374.34042.
- [10] M. Zaki, *Almost automorphic solutions of certain abstract differential equations*, Ann. Mat. Pura Appl. (4) **101** (1974), 91-114. MR 51#1059. Zbl 304.42028.

N'GUEREKATA: DEPARTMENT OF MATHEMATICS, MORGAN STATE UNIVERSITY, COLD SPRING LANE AND HILLEN ROAD, BALTIMORE, MD 21251, USA