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Abstract. Consider the random hyperbolic polynomial, f(x) = 1pa1 coshx+···+np×
an coshnx, in which n and p are integers such that n ≥ 2, p ≥ 0, and the coefficients
ak(k = 1,2, . . . ,n) are independent, standard normally distributed random variables. If
νnp is the mean number of real zeros of f(x), then we prove that νnp = π−1 logn+
O{(logn)1/2}.
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1. Introduction. Let n and p be integers such that n ≥ 2 and p ≥ 0. We suppose
that ak(k= 1,2, . . . ,n) are independent, normally distributed random variables, each
with mean 0 and variance 1, and we define the random hyperbolic polynomial f(x)
so that

f(x)=
n∑

k=1
kpak coshkx. (1.1)

We prove the following result.

Theorem 1.1. Let νnp be the mean number of real zeros of f(x). Then

νnp =π−1 logn+O
{
(logn)1/2

}
. (1.2)

The case when p = 0 was considered by Das [3], whose result was reported by
Bharucha-Reid and Sambandham [1, page 110] in the form νno∼π−1 logn. The case
when p = 1 was discussed by Farahmand and Jahangiri [5], who found the result (1.2)
in that case.
The principal term in (1.2) is independent of p. That behavior does not occur in the

algebraic case [4] (replace coshkx in (1.1) by xk and let k range from 0 to n), for which
νnp∼π−1{1+(2p+1)1/2} logn (even if p is a nonnegative real number), and also does
not occur in the trigonometric case [2] (replace coshkx in (1.1) by coskx and count
zeros on (0,2π)), for which νnp =

{
(2p+1)/(2p+3)}1/2(2n+1)+O(n1/2) (even if

p is a nonnegative real number). The error term in this last case can be replaced by
O(1) when 2p is a nonnegative integer [6, 7, 8, 9].

2. Preliminary analysis. If we apply the Kac-Rice formula to our problem, we see that

νnp =π−1
∫∞
−∞

Fnp(x)dx = 2π−1
∫∞
0

Fnp(x)dx (2.1)
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in which

Fnp(x)=
{
Anp(x)Cnp(x)−B2np(x)

}1/2
Anp(x)

, (2.2)

Anp(x)=
n∑

k=1
k2p cosh2kx, (2.3)

Bnp(x)=
n∑

k=1
k2p+1 sinhkx coshkx, (2.4)

Cnp(x)=
n∑

k=1
k2p+2 sinh2kx. (2.5)

We furnish explicit formulae for the sums in (2.3), (2.4), and (2.5) in the following
lemma.

Lemma 2.1. It is true that

22p+2Anp(x)= (2n+1)2p cschx sinhz

×
[ 2p∑

r=0
2pCr (2n+1)−rϕr (x)+(2n+1)−2p(22p+2Snp−δop

)
sinhx cschz

]
,

(2.6)

22p+3Bnp(x)= (2n+1)2p+1 cschx sinhz
2p+1∑
r=0

2p+1Cr (2n+1)−rψr (x), (2.7)

22p+4Cnp(x)= (2n+1)2p+2 cschx sinhz

×
[2p+2∑

r=0
2p+2Cr (2n+1)−rϕr (x)−(2n+1)−2p−222p+4Sn,p+1 sinhx cschz

]
,

(2.8)

in which

z = (2n+1)x, (2.9)

ϕ2r (x)= g2r (x), ϕ2r+1(x)= g2r+1(x)cothz, (2.10)

ψ2r (x)= g2r (x)cothz, ψ2r+1(x)= g2r+1(x), (2.11)

gr (x)= sinhx
{
dr (cschx)

dxr

}
, (2.12)

2Snp =
n∑

k=1
k2p, (2.13)

where pCr is the binomial coefficient p!/
{
r !(p−r)!

}
, and δop is the Kronecker delta,

i.e., δop = 1 when p = 0 and δop = 0 when p ≠ 0.
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With the help of (2.13), the identity 2cosh2kx = cosh2kx+1, it is clear that

22p+2Anp(x)= 2d
2p{∑n

k=1(cosh2kx+1)
}

dx2p
−2nδop+22p+2Snp

= d2p
{
4Ano(x)

}
dx2p

−2nδop+22p+2Snp.

(2.14)

It is known from [6, equation 2.15] that 4Ano(x)= 2n−1+cschx sinhz, if z is defined
by (2.9). Hence,

22p+2Anp(x)=
2p∑
r=0

2pCr

{
dr (cschx)

dxr

}{
d2p−r (sinhz)

dx2p−r

}
−δop+22p+2Snp. (2.15)

If the derivatives of sinhz are calculated and the definitions (2.10) and (2.12) are used,
we see that (2.6) is true. In a similar manner, it follows from (2.3), (2.4), and (2.11) that

22p+3Bnp(x)= d
{
22p+2Anp(x)

}
dx

= d2p+1(cschx sinhz)
dx2p+1

= (2n+1)2p+1(cschx sinhz)
2p+1∑
r=0

2p+1Cr (2n+1)−rψr (x),
(2.16)

so that (2.7) is true. Finally, (2.8) is a consequence of (2.6) and the identity Cnp(x) =
An,p+1(x)−2Sn,p+1.
A straightforward calculation, based on (2.6), (2.7), and (2.8), suffices to prove the

following lemma.

Lemma 2.2. It is true that

24p+6
{
Anp(x)Cnp(x)−B2np(x)

}= (2n+1)4p+2 csch2x sinh2z

×
[4p+2∑

r=0
(2n+1)−rθrp(x)+Θnp(x)sinhx cschz−Ψnp(x)sinh2(x)csch2z

]

(2.17)

in which

θrp(x)=
r∑

s=0

{
2pCs 2p+2Cr−sϕs(x)ϕr−s(x)−2p+1Cs 2p+1Cr−sψS(x)ψr−s(x)

}
, (2.18)

Θnp(x)= (2n+1)−2p(22p+2 Snp−δop
)2p+2∑

r=0
2p+2Cr (2n+1)−rϕr (x)

−(2n+1)−2p−2 22p+4Sn,p+1
2p∑
r=0

2pCr (2n+1)−rϕr (x),

(2.19)

Ψnp(x)= (2n+1)−4p−2(22p+2Snp−δop
)
22p+4Sn,p+1. (2.20)

We need the more explicit formulae for gr (x) contained in the following lemma.
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Lemma 2.3. There are constants βrs
(
s = 0,1, . . . ,[r/2]) such that

g2r (x)=
r∑

s=0
β2r ,s csch2s x, (2.21)

g2r+1(x)=
r∑

s=0
β2r+1,s csch2s x cothx. (2.22)

It follows from (2.12) that (2.21) is true when r = 0 if β00 = 1. A differentiation of
(2.12) shows that

gr+1(x)= dgr

dx
−gr (x)cothx. (2.23)

If (2.21) is true for r , we infer from (2.23) that (2.22) is true for r , provided that

β2r+1,s =−(2s+1)β2r ,s . (2.24)

Similarly, the truth of (2.21) with r replaced by r +1 is assured when

β2r+2,s =−(2s+1)β2r+1,s−2sβ2r+1,s−1. (2.25)

We record for future reference the cases when r = 0, 1, and 2:

g0(x)= 1, g1(x)=−cothx, g2(x)= 1+2csch2x. (2.26)

3. Estimates of the terms in (2.6) and (2.17) when x is not too small. We suppose
that x ≥ ε, in which

ε = w
(2n+1) , w = (logn)1/2. (3.1)

Lemma 3.1. If no = 8104 and n≥n0, the functions sinh3x cschz, sinhx cschz, and
sinh4x csch2z are decreasing functions of x when x ≥ ε.

We observe that

csch2x sechx sinh2zsechzd(sinh3x cschz)
dx

= 3tanhz−(2n+1)tanhx
< 3−(2n+1)tanhε.

(3.2)

Also,

cosh2 εd
{
(2n+1)tanhε}
dn

= sinh2ε−2ε+(2nw)−1 > 0. (3.3)

Therefore, (2n+1)tanhε > 3 when n≥n0 because (2n+1)tanhε > 3 when n= 8104.
It follows that sinh3x cschz is decreasing when x ≥ ε and n≥n0. The other functions
in the lemma are decreasing because (sinh3x cschz)1/3 csch2/3z and (sinh3x cschz)4/3

csch2/3z are. The third term on the right hand side of (2.17) is estimated in the fol-
lowing lemma.
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Lemma 3.2. When n≥n0 and x ≥ ε, it is true that

Ψnp(x)sinh2x csch2z =O
(
w4e−2w

)
(2n+1)−2 csch2x. (3.4)

It follows from an explicit formula [6, equation (2.12)] for Snp that Snp = O
{
(2n+

1)2p+1
}
. Then (2.20) and Lemma 3.1 imply that

Ψnp(x)sinh4x csch2z =O
{
(2n+1)2 sinh4 εcsch2w}

=O
{
(2n+1)2ε4 e−2w }. (3.5)

Lemma 3.2 is an immediate consequence of this result and (3.1).

Lemma 3.3. When x ≥ ε, it is true that gr (x) = O(ε−r ), ϕr(x) = O(ε−r ), and
ψr(x)=O(ε−r ).

The lemma follows immediately from (2.10), (2.11), (2.21), and (2.22), and the facts
that

cschx ≤cschε < ε−1,

cothx ≤cothε < ε−1 coshεo,

cothz ≤cothw ≤ cothw0,

(3.6)

in which εo = w0/(2no +1) and w0 = (logn0)1/2. Now, we can estimate the second
term on the right-hand side of (2.17).

Lemma 3.4. When n≥n0 and x ≥ ε, it is true that

Θnp(x)sinhx cschz =O
(
w3 e−w )(2n+1)−2 csch2x. (3.7)

We deduce from (2.19), Lemmas 3.1 and 3.3, and the earlier observation that Snp =
O
{
(2n+1)2p+1} that

Θnp(x)sinh3x cschz =O
{
(2n+1)

2p+2∑
r=0

O
(
w−r )sinh3 εcschw

}

=O
{
(2n+1)ε3 e−w }=O

(
w3 e−w )(2n+1)−2.

(3.8)

This equation suffices to prove Lemma 3.4.
The analysis to obtain an estimate for θrp is more recondite. We use (2.10), (2.11),

(2.18), and the identity coth2z = 1+csch2z, to see that

θ2r ,p =
2r∑
s=0

L2r ,sp gs(x) g2r−s(x)+Mrp(x)csch2z, (3.9)

in which

Lrsp = 2pCs 2p+2Cr−s−2p+1Cs 2p+1Cr−s , (3.10)

Mrp(x)=
r−1∑
s=0

2pC2s+1 2p+2C2r−2s−1g2s+1(x) g2r−2s−1(x)

−
r∑

s=0
2p+1C2s 2p+1C2r−2s g2s(x)g2r−2s(x).

(3.11)
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In a similar manner, we also see that

θ2r+1,p(x)=
2r+1∑
s=0

L2r+1,sp gs(x) g2r+1−s(x)cothz. (3.12)

Because we infer from (3.9) and Lemma 3.3 that Mrp(x)=O(ε−2r ), it follows, from
(3.9) and (3.12), that

θrp(x)=
r∑

s=0
Lrsp gs(x) gr−s(x)(cothz)ur +O(ε−2r )csch2z (3.13)

in which ur =
{
1−(−1)r}/2. Moreover, Lemma 2.3 implies that

gr (x)=
[r/2]∑
h=0

βrh csch
2hx(cothz)ur , (3.14)

so that there are constants γrsh such that

gs(x)gr−s(x)=
[r/2]∑
h=0

γrsh csch
2hx(cothx)ur . (3.15)

In the derivation of (3.15), it is helpful to consider separately the cases when r is even
and r is odd. When r is even and s is odd, we also need the identity coth2x = 1+
csch2x. An easy induction using (2.24) and (2.25) when s = 0 shows that βro = (−1)r ;
hence γrso = (−1)r .
The combinatorial identity

r∑
s=0

Lrsp = 0 (3.16)

is well known (and is easy to prove). We now deduce, from (3.13), (3.15), and (3.16),
that

θrp(x)sinh2x =
r∑

s=0
Lrsp

[r/2]∑
h=1

γrsh csch
2h−2x(cothx cothz)ur

+O(ε−r )sinh2x csch2z.

(3.17)

We showed in the proof of Lemma 3.3 that

cschx =O
(
ε−1

)
, cothx =O

(
ε−1

)
, cothz =O(1). (3.18)

Because it follows from Lemma 2.3 that

sinh2x csch2z ≤ sinh2 εcsch2w =O
(
ε2 e−2w

)
, (3.19)

we conclude that the following lemma is true.

Lemma 3.5. When n≥no and x ≥ ε, it is true that

θrp(x)=O
(
ε2−r ){1+O

(
e−2w

)}
csch2x. (3.20)



MEAN NUMBER OF REAL ZEROS OF A RANDOM . . . 341

We also need the more precise estimates of θrp(x) when r = 0, 1, and 2, deducible
from (2.10), (2.11), (2.18), and (2.26), that are recorded below:

θ0p(x)=−csch2z =O
(
w2 e−2w

)
(2n+1)−2 csch2x,

θ1p(x)= 0,
θ2p(x)= (1−4p2 csch2z+2psinhx cschz)csch2x

= {1+O
(
e−2w

)+(2n+1)−1O(w e−w )}csch2x
= {1+O

(
e−2w

)}
csch2x.

(3.21)

Finally, the methods used above can be applied to (2.6) to yield an easy proof of the
following lemma.

Lemma 3.6. When n≥no and x ≥ ε, it is true that

22p+2Anp = (2n+1)2p cschx sinhz[1+O
(
w−1)]. (3.22)

Proof of Theorem 1.1. If we use Lemmas 3.2, 3.4, and 3.5, we infer from (2.17),
and (3.21) that, when n≥no and x ≥ ε,

24p+6
{
Anp(x)Cnp(x)−B2np(x)

}= (2n+1)4p csch4x sinh2z[1+O
(
w−1)]. (3.23)

It now follows from (2.2) and Lemma 3.6 that, when n≥n0 and x ≥ ε,

2Fnp(x)dx = {1+O
(
w−1)}cschx, (3.24)

2
∫∞
ε

Fnp(x)dx = {1+O
(
w−1)} log{coth( ε

2

)}

= {1+O
(
w−1)}{1+O

(
w−2 logw

)}
logn,

(3.25)

2π−1
∫∞
ε

Fnp(x)dx =π−1 logn+O
{(
logn

)1/2}. (3.26)

Next, we observe that (2.2), (2.3), and (2.5) imply that

0≤ Cnp(x)≤n2
n∑

k=1
k2p sinh2kx <n2Anp(x), (3.27)

0≤ Fnp(x)≤
{Cnp(x)
Anp(x)

}1/2
<n, (3.28)

2π−1
∫ ε

0
Fnp(x)dx < 2π−1nε <π−1w =O

{
(logn)1/2

}
. (3.29)

If we add (3.26) and (3.29) and use (2.1), we see that the theorem is true.
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