
Internat. J. Math. & Math. Sci.
Vol. 23, No. 5 (2000) 319–334

S0161171200001745
© Hindawi Publishing Corp.

SIMILARITY ANALYSIS FOR NATURAL CONVECTION
FROM A VERTICAL PLATE WITH DISTRIBUTED

WALL CONCENTRATION

I. MULOLANI and M. RAHMAN

(Received 10 July 1998)

Abstract. Steady laminar natural convection flow over a semi-infinite vertical plate is
examined in this paper. It is assumed that the concentration of a species along the plate
follows some algebraic law with respect to chemical reaction. Similarity solutions may then
be obtained for different orders of reaction. The fundamental parameters of this problem
are the Schmidt number, Sc, and reaction order, n. Numerical results, based on the fourth
order Runge-Kutta method, for Schmidt number ranging from 0.0 to 100.0 and reaction
order from 0.0 to 1.5 are presented. When chemical reaction occurs, diffusion and velocity
domains are seen to expand out from the plate. For large values of n, one may expect
a smaller diffusion layer which, at fixed Schmidt number, is associated with increased
velocity and reduced convection-layer.
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1. Introduction. Natural convection flow exists in a variety of situations including
porous media supported by surfaces. Such flows have application in a broad spectrum
of engineering systems including geothermal reservoirs, building thermal insulation,
direct-contact heat exchangers, solar heating systems, packed-bed catalytic reactors,
nuclear waste disposal systems and enhanced recovery of petroleum resources (cf. [7]).
In many industrial applications, such as in cooling of electronic equipment, natu-

ral convection heat transfer is of high importance. The trend of miniaturization of
electronic solid state devices has introduced problems of heat dissipation from the
devices themselves, Wang [27]. Among the many possibilities for removing heat from
an electronic device that involves conduction and/or convection (natural or forced)
heat transfer, cooling with natural convection is considered as a cost effective and
attractive technique because it is a convenient and inexpensive mode of heat transfer.
Heat removal by this technique may be sufficient to keep weakly-heated electronic
chips below a critical value set by reliability considerations. Efficient cooling cannot
be achieved without understanding the heat transfer from each specific component
and determining the flow and thermal fields (see Incropera [16]).
In many natural and technological processes, temperature and concentration dif-

ferences occur simultaneously. Such processes occur in cleaning operations, drying,
crystal growth, solar ponds and photosynthesis. A clear understanding of the nature
of interaction between thermal and concentration buoyancies is necessary to control
these processes (see Angirasa [3]).
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A problem of steady-state natural convection induced by chemical diffusion from a
vertical plate has been reported by Levich [20]. The plate, at zero concentration of a
chemical species A, but containing some catalytic substances, is placed in a fluid so-
lution of A at concentration c0 > 0. When the plate comes in contact with the solution,
a heterogeneous chemical reaction takes place on the plate. Changes in concentration
imply density gradients which in the presence of a gravitational field, induce natural
convection flow near the plate.
Recently, a numerical study of combined heat and mass transfer by natural convec-

tion adjacent to vertical surfaces situated in fluid-saturated porous media has been
reported by Angirasa et al. [3]. Special attention was given to opposing buoyancy ef-
fects of the same order and unequal thermal and species diffusion coefficients.
Many principal past studies concerning natural convection flows over a semi-infinite

vertical plate immersed in an ambient fluid where the flow is induced by both heat
and chemical diffusion mechanisms have been found in the literature [5, 8, 12, 18]. An
interesting extension of this problem is the study of effects caused by the inclusion
of general chemical reaction of order n. In particular, this study is concerned mainly
with the steady-state behaviour of the same binary system composed of a semi-infinite
plate and ambient fluid, each initially at different concentrations of a given species, but
betweenwhich a homogeneous, irreversible, isothermal chemical reaction of ordern is
assumed to occur. Similar studies have been pursued in the literature (see Meadley and
Rahman [21], Gebhart and Pera [13]). This study serves to highlight and thus gainmore
insight into the effects of chemical diffusion and reaction on natural convection flow.
If a solid plate is immersed and held vertically within a fluid medium at rest, it

may be possible to induce natural convection in the ambient fluid when the material
species are such that chemical diffusion takes place between plate and fluid giving
rise to a change in buoyancy forces. Despite the fact that the basic principles of heat
and mass transfer are theoretically similar, the resulting flow pattern for each system
may be quite distinct. A combination of the twomechanisms is also possible. Whatever
the case, ultimate steady-state conditions may be established and maintained using
external controls, Gebhart and Pera [13].
We present a theoretical study of laminar natural convection caused by chemical

diffusion and reaction from a vertical plate surface. The focus of the study is on
the essential nature of the flow and diffusion which occurs in the thin convection
boundary-layer adjacent to the plate surface. For this, it is convenient to consider the
idealised system composed of a semi-infinite plate set in a fluid of infinite extent.
Such a model has been commonly used in previous work [11, 12, 18, 21] and permits
the application of classical boundary-layer analysis in the mathematical formulation.
In the analysis, steady two-dimensional laminar viscous flow over the semi-infinite
vertical plate is examined. The constituents of the plate and the ambient fluid in which
it is immersed undergo a homogeneous, isothermal, irreversible chemical reaction of
nth order, Gebhart et al. [11].

2. Mathematical formulation. The principle of conservation of mass (fluid), con-
servation ofmomentum (fluidmotion), and conservation ofmass (species) by diffusion
give the basic equations of natural convection flow. These equations can be written in
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the general form [11, 13]

∂ρ
∂t
+ 	∇·(ρ	V)= 0,

ρ
[
∂	V
∂t
+(	V · 	∇)	V

]
= ρ	g− 	∇P+µ∇2	V + µ

3
	∇(	∇· 	V),

∂C
∂t
+(	V · 	∇)C = 	∇·(D	∇C)+ Ċ′′′.

(2.1)

Employing the Boussinesq approximation along with an order analysis, the equa-
tions for natural convection can be simplified even further to the form:

∂U
∂X

+ ∂V
∂Y

= 0,

U
∂U
∂X

+V ∂U
∂Y

= gβ∗(C−C∞)+ν ∂
2U
∂Y 2

,

U
∂C
∂X

+V ∂C
∂Y

=−k(C−C∞)n+D∂2C
∂Y 2

.

(2.2)

The relevant boundary conditions are:

at Y = 0, U = V = 0,
at Y �→∞, U = V = 0, C �→ 0. (2.3)

Further, at the plate surface Y = 0,

C = C0(X). (2.4)

Here, C0(X) is a given function of X representing the concentration distribution along
the plate. In this problem, C0(X) is considered to be arbitrary for the purpose of
formulating the mathematical model. However, the nature of the function in reality
may be subject to severe limitations which arise from the chemical kinetics involved
in setting up steady-state conditions for a given species and ambient fluid (see Aris
[4]). Introducing the stream function ψ(X,Y) defined by

U = ∂ψ
∂Y

, V =−∂ψ
∂X

, (2.5)

equations (2.2) reduce to

ψYψYX−ψXψYY = νψYYY +gβ∗C,
ψYCX−ψXCY =DCYY −kCn (2.6)

with boundary conditions

Y = 0 :

ψY =ψX = 0,
C = C0(X),

Y �→∞ :

ψY =ψX = 0,
C = 0. (2.7)

Now, we investigate the possibility of similarity solutions for this set of equations (see
[2, 14]).
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3. Basic equations for various reaction rates. Consider the following one-para-
meter transformation group

X̄ = amX, Ȳ = alY , ψ̄= apψ, C̄ = aqC, (3.1)

where “a” is a parameter and the exponentsm, l, p, and q are constants. We can show
that the governing equations can be transformed into a set of ordinary differential
equations when the concentration at the surface of the plate follows an algebraic law.
This is in comparison to the perturbation-type similarity solutions that arise in the
case of uniform concentration along the plate.

Case I. Generalnth order chemical reaction. Consider the transformations

η(X,Y)= Yb(x), ψ(X,Y)= νa(X)f(η),

c(X,Y)= C−C∞
C0−C∞ , e(X)= C0−C∞,

(3.2)

and introduce them into (2.6) to obtain the differential equations.

f ′′′ + gβ∗e
ab3ν2

c+ ax
b
f ′′f −

(
abx
b2

+ ax
b

)
f ′2 = 0,

c′′

Sc
+ ax

b
fc′ − aex

be
f ′c− ken−1

νb2
cn = 0

(3.3)

provided the following conditions hold:

ax
b
= C1,

abx
b2

= C2,
aex
be

= C3,

gβ∗e
ab3ν2

= C4,
ken−1

νb2
= C5,

(3.4)

where C1, C2, C3, C4, and C5 are arbitrary constants. From these conditions, we need
to determine expressions for a(X), b(X), and e(X) following the analysis of Gebhart
et al. [11]. Taking the expressions in turn and integrating each one leads to the fol-
lowing result (see Gebhart et al. [11]):

a(X)=
(
D(C1−C2)

C1

)C1/(C1−C2)
XC1/(C1−C2). (3.5)

It is then possible to derive the following expressions:

e(X)=NX1/(3−2n), c5 = p = kNn−1
√
6−4n
gβ∗N

. (3.6)

The differential equations for the nth order chemical reaction are given by

f ′′′ +(5−3n)ff ′′ +c−(4−2n)f ′2 = 0,
c′′

Sc
+(5−3n)fc′ −2f ′c−pcn = 0

(3.7)

provided n ≠ 1, 3/2, 5/3. We note that the order of reaction need not necessarily be
an integer. The pyrolysis of acetaldehyde (n = 3/2), and the formation of phosgene
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from carbonmonoxide and chlorine (n= 5/2) are a few of the frequently encountered
fractional reaction orders. the decomposition of nitrogen pentoxide and the radio-
active disintegration of unstable nuclei are examples of first order reactions while
the gas phase thermal decomposition of nitrogen dioxide and hydrogen iodide are
both examples of second order reactions. Third order reactions are extremely rare
in engineering practice, an example being nitric oxide with chlorine and oxygen. The
similarity transformations for these equations are given by:

η(X,Y)= Y
X

(
Grx
6−4n

)1/4
,

ψ(X,Y)= ν(6−4n)
(
Grx
6−4n

)1/4
f(η),

c(X,Y)= C−C∞
C0−C∞ ,

e(X)= C0−C∞ =NX1/(3−2n).

(3.8)

Case II. Zeroth order chemical reaction. From the nth order general case,
we can derive the zeroth order chemical reaction differential equations. The differen-
tial equations become

f ′′′ +5ff ′′ +c−4f ′2 = 0,
c′′

Sc
+5fc′ −2f ′c−q = 0,

(3.9)

where

q = k

√
6

gβ∗N3
. (3.10)

The similarity transformations for this set of equations are given by:

η(X,Y)= Y
X

(
Grx
6

)1/4
,

ψ(X,Y)= 6ν
(
Grx
6

)1/4
f(η),

c(X,Y)= C−C∞
C0−C∞ ,

e(X)=NX1/3.

(3.11)

Case III. Chemical reaction of order n = 1/2. Again, from the general nth
order case, the differential equations for a chemical reaction of order n= 1/2 may be
derived. They are

f ′′′ + 7
2
ff ′′ +c−3f ′2 = 0,

c′′

Sc
+ 7
2
fc′ −2f ′c−Rc1/2 = 0,

(3.12)

where

R = 2k
N
√
gβ∗

(3.13)
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and the transformations are given by:

η(X,Y)= Y
X

(
Grx
4

)1/4
,

ψ(X,Y)= 4ν
(
Grx
4

)1/4
f(η),

c(X,Y)= C−C∞
C0−C∞ ,

e(X)=NX.

(3.14)

Case IV. Chemical reaction of order n = 3/5. From the general nth order
case, the n= 3/5 order chemical reaction may be derived . The differential equations
for this case are

f ′′′ + 16
5
ff ′′ +c− 14

5
f ′2 = 0,

c′′

Sc
+ 16
5
fc′ −2f ′c−Pc3/5 = 0.

(3.15)

The similarity transformations are:

η(X,Y)= Y
X

(
5Grx
18

)1/4
,

ψ(X,Y)= 18ν
5

(
5Grx
18

)1/4
f(η),

c(X,Y)= C−C∞
C0−C∞ ,

e(X)=NX5/9.

(3.16)

Case V. Chemical reaction of order n= 6/5. Again from thenth order chem-
ical reaction, the case n= 6/5 may be derived. The differential equations for this are

f ′′′ + 7
5
ff ′′ +c− 8

5
f ′2 = 0,

c′′

Sc
+ 7
5
fc′ −2f ′c−Sc6/5 = 0.

(3.17)

The similarity transformations are given by the following:

η(X,Y)= Y
X

(
5Grx
6

)1/4
,

ψ(X,Y)= 6ν
5

(
5Grx
6

)1/4
f(η),

c(X,Y)= C−C∞
C0−C∞ ,

e(X)=NX5/3.

(3.18)

Case VI. Chemical reaction of order n = 3/2. When the reaction order is
n = 3/2, we must derive the differential equations from the original equations (3.3).
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An analysis similar to that in Case I is repeated to obtain the following differential
equations:

f ′′′ +c+C1
(
ff ′′ −2f ′2)= 0,

c′′

Sc
+C1(fc′ −4f ′c)−rc3/2 = 0,

(3.19)

where

r = kN1/2

ν
(
gβ∗N/ν2

)2/3 . (3.20)

The similarity transformations are

η(X,Y)= Y
(
gβ∗N
ν2

)1/3
e(gβ

∗N/ν2)1/3C1X,

ψ(x,Y)= νe(gβ
∗N/ν2)1/3C1Xf(η),

e(X)=Ne4(gβ
∗N/ν2)1/3C1X.

(3.21)

To aid in the graphical analysis, these cases have been arbitrarily chosen, i.e., n =
0,1/2,3/2,3/5,6/5,5/3. These similarity transformations for the cases chosen are
unique to this paper, whereas the method of obtaining the transforms is not (see
Gebhart et al. [11]). The boundary conditions for these 6 cases are given by

η= 0 :



f(0)= 0,
f ′(0)= 0,
c(0)= 1,

η �→∞ :

f

′(∞)= 0,
c(∞)= 0. (3.22)

4. Numerical solution method. These approximations have been integrated nu-
merically for various Schmidt numbers and reaction orders using a Runge-Kutta inte-
gration scheme to correct for assumed starting values of the initial conditions at the
surface. The general forms of the equations to be treated are:

f ′′′(η)= F(f ′′,f ′,g′,f ,g,η),

g′′(η)=G(f ′′,f ′,g′,f ,g,η)
(4.1)

with the initial and asymptotic boundary conditions (3.22). With the two asymptotic
boundary conditions, it was necessary to assume starting values for the two additional
conditions that were required. Let

A= f ′′(0), B = g′(0) (4.2)

to fulfill the requirement that

lim
η→∞f

′(A,B,η)= f ′∞(A,B)= 0,
lim
η→∞g(A,B,η)= g∞(A,B)= 0. (4.3)
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If it is assumed that A1 and B1 are trial values of A and B such that

A=A1+h, B = B1+k, (4.4)

where h and k are small, thus by (4.3) we have

f ′∞(A1+h, B1+k)= 0,
g∞(A1+h, B1+k)= 0. (4.5)

In addition, to satisfying the asymptotic boundary conditions, it was assumed that
the gradients of (4.5) were zero at infinity. This leads to

f ′′∞(A1+h,B1+k)= 0,
g′∞(A1+h,B1+k)= 0.

(4.6)

Taylor’s expansions for small h and k were then applied to (4.5) and (4.6). In matrix
form, the problem may be expressed as:



∂f ′∞
∂A

∂f ′∞
∂B

∂g∞
∂A

∂g∞
∂B

∂f ′′∞
∂A

∂f ′′∞
∂B

∂g′∞
∂A

∂g′∞
∂B




(
h
k

)
=−



f ′∞(A,B)
g∞(A,B)
f ′′∞(A,B)
g′∞(A,B)


 . (4.7)

The application of the least squares method yields the least square error

E = f ′∞
2+g∞2+f ′′∞2+g′∞2. (4.8)

The partial derivatives appearing in the solutions of h and k can be obtained by inte-
grating the perturbed differential equations with their appropriate initial conditions.
From (4.1) we obtain the perturbed differential equations for the A-derivatives with
the initial conditions as shown in the following:

∂f ′′′

∂A
= ∂F
∂f ′′

∂f ′′

∂A
+ ∂F
∂f ′

∂f ′

∂A
+ ∂F
∂g′

∂g′

∂A
+ ∂F
∂f

∂f
∂A

+ ∂F
∂g

∂g
∂A

,

∂g′′

∂A
= ∂G
∂f ′′

∂f ′′

∂A
+ ∂G
∂f ′

∂f ′

∂A
+ ∂G
∂g′

∂g′

∂A
+ ∂G
∂f

∂f
∂A

+ ∂G
∂g

∂g
∂A

,

η= 0 :



∂f
∂A

= ∂f ′

∂A
= ∂g′

∂A
= ∂g
∂A

= 0,
∂f ′′

∂A
= 1.

(4.9)

Perturbed differential equations for the B-derivatives with appropriate initial condi-
tions were obtained from (4.1). To correct the trial values of A1 and B1, the original
equations (4.1), (4.2) with the perturbed equations for A and B with their appropriate
initial conditions were integrated simultaneously up to a certain suitable point. At
this point, the trial values of A1 and B1 were corrected to refine the solution. After
two or three iterations at the same point where the least-square error appeared to be
steady, the integration range was extended and the process repeated up to the ex-
tended point. This iterative process was continued until the desired solution accuracy
was obtained.
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5. Discussion of results. From the results, it is observed that decreasing the
Schmidt number increases the velocity level and reduces the concentration diffusion
region. In Figure 5.1, the effect of the order of reaction on concentration is shown as

0
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0.4

0.6

0.8

1

0 2 4 6 8 10

f ′

η

Concentration profiles at Sc= 0.01

n= 1.2

n= 0.0

n= 1.5n= 0.5

Figure 5.1. Effect of rate of reaction on concentration.

n varies from n = 0, 0.5, 1.2 at fixed Sc = 0.01. Within the range (0,2), an increase
of n (which effectively increases the sensitivity of species depletion with change in
concentration) tends to decrease the concentration diffusion region to about 50% of
its value before increasing slightly. Overall, the concentration gradient increases. We
can expect a smaller less distinct diffusion layer for larger orders of n. This agrees
keeping with the analysis made by Meadley and Rahman [21]. Figure 5.2 shows the
effect of the rate of reaction on the velocity for orders n= 0, 0.5, 1.2, 1.5 at Sc= 0.01.
Here, the maximum velocity decreases slightly before rising to a value above its ini-
tial level. On the other hand, the extent of the convection layer is reduced to a little
over 50% of its original size which is to be expected since the concentration of species
on the plate increases as the length of the plate is traversed in the vertical direction.
Flow reversal is also expected as n increases (see Figures 5.2 and 5.9) and the Schmidt
number decreases. Examination of the equations for each of the Cases I–VII, reveals
that as Schimdt number increases to a considerable amount (1000 ≤ Sc), the second
order differential term’s effect (c′′) is neglected. To take its effect into consideration,
a singular perturbation expansion of the concentration equation in each case would
be needed.

6. Conclusions. This study has mainly been concerned with obtaining similarity
solutions of natural convection flows induced by a semi-infinite vertical plate with
distributed concentration along the plate wall. The basis of this theoretical work has
been classical boundary-layer analysis.
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Figure 5.2. Effect of rate of reaction on velocity.
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Figure 5.3. Zeroth order concentration profiles.

Steady-state natural convection flow over a semi-infinite vertical plate has been stud-
ied for the case in which the plate is of a given concentration in a chemical species
and convection arises as a result of chemical reaction and diffusion within the am-
bient fluid. Similarity solutions have been obtained for various orders of chemical
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Figure 5.4. Zeroth order concentration profiles.
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Figure 5.5. Zeroth order velocity profiles.

reaction when the concentration of species along the plate follows some algebraic law
(power law).
It has been found that increasing the order of reactionn, increases the concentration

gradient. For large values ofn, a smaller diffusion layer is expected. Also, this increase



330 I. MULOLANI AND M. RAHMAN

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

c

η

Reaction order n= 1.2

Sc= 0.01

Sc= 0.05

Sc= 0.1Sc= 0.5

Figure 5.6. Concentration profiles for n= 1.2.
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Figure 5.7. Velocity profiles for n= 1.2.

in reaction order,n, at fixed Schmidt number is associated with increased velocity and
reduced convection-layer.
Further study of this problem could investigate the effects of higher Schimdt num-

bers on the reaction rate and mass diffusion process. Such an investigation would
necessarily need to incorporate a singular perturbation expansion in the equation for
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Figure 5.8. Concentration profiles for n= 1.5.
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Figure 5.9. Velocity profiles for n= 1.5.

the concentration. A matched asymptotic expansion method is needed to carry out
this investigation.
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Nomenclature. In the following list of symbols, characteristic dimensions are
given in terms of mass (M), length (L), temperature (T ), and velocity (Uc ).

Latin characters:

C = dimensional species concentration
C0 = species concentration at vertical plate
C∞ = species concentration in the ambient fluid
c = C−C0/C0−C∞ = nondimensional species concentration
Cρ = specific heat of fluid at constant pressure
Ċ′′′ = chemical reaction rate
D = chemical molecular diffusivity
f = nondimensional stream function
g = acceleration due to gravity
Grx = Grashof number
J′′ = mass flux (moles)
k= homogeneous chemical rate constant
K = heat conduction coefficient
n= order of reaction
Nu= Nusselt number
Pr= Prandtl number
P = fluid pressure
Re= Reynolds number
Sc= Schmidt number
T = absolute temperature of fluid
U = velocity in x-direction
Uc = characteristic velocity
V = velocity component in y-direction
	V = velocity vector
X = vertical distance along the plate surface
Y = horizontal distance from the plate surface.
Greek characters:

α=K/ρCρ = thermal diffusivity
β= thermal coefficient of volumetric expansion
β∗ = volumetric coefficient of expansion with concentration
µ = dynamic viscosity of fluid
ν = µ/ρ = kinematic viscosity of fluid
ρ = fluid density
ψ= stream function
η= similarity variable
ε= dimensionless reaction number
	∇= the “del” operator
∇2 = ∂2/∂X2+∂2/∂Y 2+∂2/∂Z2.
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