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AN INTERESTING FAMILY OF CURVES OF GENUS 1

ANDREW BREMNER
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Abstract. We study the family of elliptic curvesy2 = x3−t2x+1, both overQ(t) and over
Q. In the former case, all integral solutions are determined; in the latter case, computation
in the range 1 ≤ t ≤ 999 shows large ranks are common, giving a particularly simple
example of curves which (admittedly over a small range) apparently contradict the once
held belief that the rank under specialization will tend to have minimal rank consistent
with the parity predicted by the Selmer conjecture.
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1. It is the purpose of this note to draw attention to the family of elliptic curves

E :y2 = x3−t2x+1 (1.1)

which tend to possess many integral points for a fixed t ∈ Z; for example, at least
52 integral points when t = 8. We describe the computational investigation into this
phenomenon. First, regarding (1.1) as the generic fibre of an elliptic surface defined
overC, then the groupG of sections of the surface is naturally identifiedwith the group
of C(t)-rational solutions of (1.1), which by abuse of notation will also be denoted by
G. Indeed, we tend to refer to (1.1) as an elliptic curve over C(t) and speak about
“points on the curve” rather than “sections of the surface”. It is well known that G is
finitely generated. For (1.1), the C(t)-rank is 4, and this allows the determination of all
the “integer” points of (1.1), which we effect over Q, that is, finding all points (x,y)
of (1.1) satisfying x,y ∈Q[t].
Second, we give numerical information about the curves (1.1) in the range 1 ≤ t ≤

999, computing the rational Mordell-Weil rank independently of any of the standard
conjectures, except in four instances where it was necessary to assume the Birch and
Swinnerton-Dyer conjecture. The ranks are surprisingly large: although theQ(t)-rank
of (1.1) is 3, there are 9 cases of Q-rank 7 and 82 cases of Q-rank 6 within the given
range. This provides some support for the belief that a curve under specialization will
not necessarily tend to have the minimal rank consistent with the parity predicted by
the Selmer conjecture.

2. The curve (1.1) occurs as Example 2.32(b) Cox and Zucker [3] where it is shown
that the curve is torsion-free, and G has C(t)-rank 4, with basis

P0 = (0,1), P1 = (t,1), P2 = (−1, t), P3 = (−w,w2t) (2.1)

where w2+w+1= 0.
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Alternatively, this is a straightforward verification using the theory of Mordell-Weil
lattices as described by Shioda [7]; see Kuwata and Top [5] for a typical illustration of
the method.
Let 〈 , 〉 :G×G→R be the height-pairing defined by

〈
Q,Q′〉= 1

2

(
ĥ(Q+Q′)− ĥ(Q)− ĥ(Q′)

)
, (2.2)

where ĥ is the canonical height function. Using the algorithm of Silverman [8], one
computes the height-pairing matrix on the basis (2.1) to be

(〈Pi,Pj〉)=
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Accordingly,

ĥ
(
m0P0+m1P1+m2P2+m3P3

)= 1
2

(
m2

0−m0m1+m2
1+m1(m2+m3)+m2

2+m2
3

)
.

(2.4)

It is now, in theory at least, straightforward to determine all the points on (1.1) with
x,y ∈ C[t]. Hindry and Silverman [4, Corollary 8.5], give an explicit bound for the
height of such points P , which for the curves (1.1) becomes ĥ(P)≤ 29. Using (2.4), the
coefficientsm0,m1,m2,m3 of P with respect to the basis (2.1) must therefore satisfy

2m2
0+2(m0−m1)2+(m1+2m2)2+(m1+2m3)2 ≤ 8×29= 232. (2.5)

There are in fact 16873 four-tuples (m0,m1,m2,m3) satisfying (2.5), where we restrict
without loss of generality to the first nonzeromi being positive. The labour required
to check in each of these cases whether the corresponding P has coefficients in C[t] is
excessive, and we restrict the computation to Q[t]. Adding P3 to its conjugate point
(−w2,wt) results in P0+2P1−P2 and it follows that a Q(t)-basis of (1.1) is simply
{P0,P1,P2}. There are now 1330 solutions of (2.5) (with m3 = 0) and it is practicable
to test these for integrability using a program in PARI-gp. (The “largest” triple to test
is (m0,m1,m2) = (7,10,−7); the program ran for several weeks at low priority on a
SUN workstation). The following result is established.

Theorem 2.1. The curve (1.1) has precisely 24 solutions in Q[t], namely:

(x,±y)= (0,1),(−1, t),(t,1),(−t,1),(t+2,2t+3),(−t+2,−2t+3),(
t2−1, t3−2t),(t2+2t+2, t3+3t2+4t+3),
(
t2−2t+2,−t3+3t2−4t+3),

(
t4

4
,
t6

8
−1
)
,

(
t4+2t,t6+3t3+1),(t4−2t,t6−3t3+1).

(2.6)
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3. Using Cremona’s package “mrank” on a SUN workstation, we computed the ra-
tional rank of (1.1) when specialized to t in the range 1≤ t ≤ 999. There were just four
instances where the rank was not calculated exactly, corresponding to the presence of
a nontrivial 2-component of the Safarevic-Tate group. Here Connell’s “Apecs” package
was used to compute the appropriate derivative of the L-series, thereby establishing
the rank subject to the Birch and Swinnerton-Dyer conjecture. The tabulation of ranks
is as follows: what is dramatic here is that although the Q(t)-rank of (1.1) is 3, under

Table 3.1. The curves (1.1) with rank 7 occur at t = 347,443,614,757,778,784,857,877,888.

rank r 1 2 3 4 5 6 7

Number of curves (1.1) with rank r 1 2 220 413 272 82 9

specialization there are 22.02% of the curves with rank 3, 41.34% with rank 4, 27.23%
with rank 5, 8.21% with rank 6, and 0.90% with rank 7. It was once believed that al-
most all curves under specialization would have the minimal rank consistent with the
generic rank and sign of the functional equation, so here, ranks 3 or 4; yet ranks 3, 4
account for only 64% of the cases. Put another way there are 502 curves in the range
with sign of functional equation −1; and 272 of these, or fully 54.18%, have rank 5,
compared to 220 (43.82%) with the minimally consistent rank 3. Kramarz and Zagier
[9] seem to give the first recorded instance of scepticism regarding minimality of the
rank under specialization: in a family with generic rank 0, 23.3% of curves with sign of
functional equation equal to +1 had rank at least 2 over the range searched. It must be
stressed however that the number of curves considered here is really very small, and
results of Brumer [1] interpret rather differently the voluminous data of Kramarz and
Zagier. See also Brumer and McGuinness [2], and Rohrlich [6] for a more contemporary
discussion of this issue. A further extraordinary feature of the family (1.1) is that in
all but four cases computed, the Safarevic-Tate group has trivial 2-component, the
exceptions being t = 210,285,455,645, where the 2-component has order 4. I have no
explanation for this phenomenon.

4. Several other similar pencils of curves may be written down with positive Q(t)-
rank, for example, the curves

E′ :y2 = x3−t2x2+1 (4.1)

and its twist by i,

E′′ :y2 = x3+t2x2−1. (4.2)

Similar computations as in Section 2 provide the following.

Lemma 4.1. (i) The curve E′ at (4.1) has Q(t)-rank 1 with generator P = (0,1). The
only points (x,±y) of E′ withx,y ∈Q[t] correspond to P , 2P , 4P , namely (0,1), (t2,1),
(t8/4−t2, t12/8−t6+1).
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(ii) The curve E′′ at (4.2) has Q(t)-rank 1 with generator P = (1, t). The only points
(x,±y) of E′′ with x,y ∈Q[t] correspond to P,3P , namely, (1, t), (64t6/81+16t4/9+
8t2/3+1, 512t9/729+64t7/27+16t5/3+16t3/3+3t).
The curves (4.1) and (4.2) are far less amenable to rank calculations with Cremona’s

“mrank” than the curves (1.1): search for the 2-descent curves is over a much larger
region. We ranged over 1 ≤ t ≤ 50; the largest rank of (4.1) is 4 at t = 23, the largest
rank of (4.2) is 4 at t = 36,41,46.
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