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Abstract. The object of the paper is to see the effect of small stochastic parametric per-
turbation on a nonlinear interacting system exhibiting Hopf bifurcation. The method is
based on the technique of Markov diffusion approximation.
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1. Introduction. The study of nonlinear stochastic dynamical systems has received
a great deal of attention in the past three decades and nonlinear systems, which are
extremely excited have been explored in most of these studies [4]. Lin [6] has carried
out the analysis by the Markov diffusion approximation in the case of wide-band case
excitation. Ariaratanam [1, 2] studied the behavior of linear conservative stochastic
systems under parametric excitation.
In this paper, the influence of small stochastic perturbation on a nonlinear, non-

conservative interacting population exhibiting Hopf bifurcation has been investigated.
It is observed that due to the presence of parametric perturbation, the bifurcation
point is shifted.

2. Basic stochastic differential equations. Let us consider an interacting popula-
tion of two species whose concentrations are denoted by a(t) and b(t) governed by
the system of equation [7]

ȧ= γa−ωb+(ma−nb)(a2+b2),
ḃ =ωa+γb+(na+mb)

(
a2+b2), (2.1)

where γ is a scalar control parameter andm,n,ω are constants. The equilibrium point
of the system is (0,0). The given system is expressed as

dΘ(t)
dt

=Ω(Θ(t),γ), where Θ(t)=
[
a(t)
b(t)

]
, (2.2)

and

Ω
(
Θ,γ

)=
[
γa−ωb+(ma−nb)(a2+b2)
ωa+γb+(na+mb)(a2+b2)

]
. (2.3)

http://ijmms.hindawi.com
http://www.hindawi.com


436 SANDIP BANERJEE ET AL.

Considering the random environment, we extend this system to the stochastic dif-
ferential equation

dΘ(t)
dt

=Ω(Θ(t),γ)+ελ(t)Θ(t), (2.4)

where

λ(t)=
[
k(t) −p(t)
k(t) 0

]
, (2.5)

where k(t) and p(t) are uncorrelated stationary stochastic process with zero mean
and ε is a small parameter, |ε| � 1. Here, k(t) and p(t) are considered as processes
with arbitrary smoothly varying spectral density function with small correlation time.
The Jacobian matrix J(γ) of Ω at (0,0) has two complex eigenvalues, γ± iω. As γ

passes through γ = 0, the real part of the eigenvalues changes from negative (stable
focus) to positive (unstable focus). Therefore, γ = 0 is a bifurcating point. When γ = 0,
the eigenvalues of J(γ) are purely imaginary. These values are λ1,λ2 =±iω.
The linear problem corresponding to equation (2.1) has direct and adjoint eigenvalue

problems

J(0)x1 = λ1x1, (2.6)

where x1 =α1+iβ1 =
[
1
0

]+i[01],
JT (0)x2 = λ2x2, (2.7)

where x2 =α2+iβ2 =
[
1
0

]+i[ 0
−1
]
, respectively.

We consider the transformation [3]

Θ(t)= 2εx1(α1 cosΦ+β1 sinΦ), where Φ =ωt+Ψ , (2.8)

where x1 and Ψ are the amplitude and the phase of the solution.
Multiplying (2.4) by x2T Θ̇ and considering the transformation (2.8), (2.4) can be re-

duced to the following equations (neglecting the terms of order higher than ε2):

ẋ1 = ε
{
x1
[
(1+cos2Φ+sin2Φ)

2
k(t)− 1

2
sin2Φp(t)

]
−ε(x1ν+4x31m)

}
, (2.9)

Ψ̇ = ε
{[
(1+cos2Φ−sin2Φ)

2
k(t)+ (1−cos2Φ)

2
p(t)

]
+(4x21εn)

}
, (2.10)

where γ = ε2ν .
Now, for the system (2.1), we see that γ = 0 is a bifurcation point and at this bifur-

cating value. We have the corresponding eigenvalues to be ±iω, i.e., purely imaginary
and

d(Reλ)
dλ

= 1≠ 0. (2.11)

Then by the Hopf bifurcation theorem, we predict the existence of a periodic orbit for
the considered equation.
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Now, we want to analyze the stability of the limit cycle in Hopf bifurcation. For this,
we have to calculate V ′′′

at the steady state when γ = 0, where

V
′′′
(a,b)= 3π

4ω
[
faaa+fabb+gaab+gbbb

]

+ 3π
4w2

[
fab(faa+fab)+gab(gaa+gbb)+faagaa−fbbgbb

]
,

(2.12)

where

f(a,b)= γa−ωb+(ma−nb)(a2+b2),
g(a,b)=ωa+γb+(na+mb)

(
a2+b2). (2.13)

Therefore,

V
′′′
(0,0)

/
γ=0 =

12π
ω

m. (2.14)

Thus, V ′′′ < 0, if m < 0, then the limit cycle occurs for γ > 0 (supercritical) and is
stable and V ′′′ > 0, if m > 0, then the limit cycle occurs for γ < 0 (subcritical) and
is repelling, i.e., unstable. However, when m = 0, although the conditions for a Hopf
bifurcation are satisfied, there are no periodic orbits in the vicinity of the bifurcating
point.

3. Approximation to Markov process. We assume that k(t) and p(t) are smoothly
varying spectral density functions with small correlation time. By applying limit theo-
rem of Stratonovich [9] and Khasminsky [5], we can say that the process converges
weakly as ε→ 0 to a diffusive vector Markov process governed by a pair of Ito equation
obtained by applying the stochastic averaging process to equations (2.9) and (2.10).
Equations (2.9) and (2.10) are approximated by the Ito equations

dx1 = ε2mx1 dt+ε[σ11dw1+σ12dw2],

dΨ = ε2mΨ dt+ε[σ12dw1+σ22dw2],
(3.1)

where w1(t) and w2(t) are independent Wiener process with unit density and

mx1 =
1
8
ξ1(0)+ 3

8
ξ1(2ω)+ 3

8
ξ2(2ω)+ν,

mΨ =−14 Ψ1(2ω)−
1
8
Ψ2(2ω),

(3.2)

σ 2
11+σ 2

12 =
1
8

[
2ξ1(0)+2ξ1(2ω)+ξ2(2ω)

]
,

σ 2
21+σ 2

22 =
1
8

[
2ξ1(2ω)+ξ2(2ω)

]
,

(3.3)

ξi(ω)=
∫∞
0
〈hi(t)hi(t+τ)〉cosωτdτ

Ψi(ω)=
∫∞
0
〈hi(t)hi(t+τ)〉sinωτdτ,

(i= 1,2), (3.4)
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where

h1(t)= k(t); h2(t)= p(t). (3.5)

The differential equations for the moments of x1 are given by

d〈x1〉
dt

= ξ2mx1〈x1〉,
d〈x21〉
dt

= 2ξ2(mx1+L)〈x21〉, (3.6)

L= 1
16

[
2ξ1(0)+2ξ1(2ω)+ξ2(2ω)

]
. (3.7)

Therefore,

D(t)= 〈(x1−〈x1〉2)〉= 〈x21〉−〈x1〉2. (3.8)

Solving (3.6) and substituting the values in (3.8), we get,

D(t)= exp[2ε2(mx1+L)t
]{
D2−D1e−2ε

2Lt}, (3.9)

where

{〈x1〉t=0}2 =D1, 〈x21〉t=0 =D2. (3.10)

For the stability of the system from (3.9), we must have

mx1+L≤ 0, (3.11)

or

ν ≥−1
4

[
2ξ1(0)+2ξ1(2ω)+ 1

4
ξ2(2ω)

]
. (3.12)

Therefore, the system passes from unstable state to stable state as ν passes through

ν∗ = −1
4

[
2ξ1(0)+2ξ1(2ω)+ 1

4
ξ2(2ω)

]
. (3.13)

Thus, there is a shift of bifurcation point due to the noise induced parameter.
Now, let us find the condition of stability of the limit cycle after considering the

small stochastic parametric perturbation for which we have to calculate V ′′′
at steady

state and γ = γ∗, where

γ∗ = −ε
2

4

[
ξ1(0)+2ξ1(2ω)+ 7

4
ξ2(2ω)

]
. (3.14)

From (2.14), we see that V ′′′
is independent of γ and depends on m. The limit cycle

occurs and is unstable or stable according to whether

γ ≶−ε
2

4

[
ξ1(0)+2ξ1(2ω)+ 7

4
ξ2(2ω)

]
. (3.15)
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4. Conclusion. The bifurcation theory plays a significant role in the behavior of
the linear system. Although it is self-developed for deterministic system, it is still in
infancy for stochastically perturbed or excited systems [8]. In this paper, the inter-
acting population governed by nonlinear system of equations has a Hopf bifurcation,
which generates an unstable or stable limit cycle according as whether the bifurca-
tion parameter is negative or positive. The stochastic analysis of the Hopf bifurca-
tion of nonlinear interacting population system under the influence of small stochas-
tic parametric excitation due to the fluctuating environment has been studied. We
see that, due to this noise-induced parameter, the bifurcation point is shifted but
the limit cycle, which occurs still remains unstable or stable according to whether
γ less than or greater than γ∗. The system of the nonlinear equations considered,
though has no direct biological significance, it could still be considered as a model of
a system of equations for the stochastic Hopf bifurcation analysis of stochastically
excited systems.
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