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Abstract. We determine exact solutions of steady, plane viscous incompressible magne-
tohydrodynamic (MHD) aligned and non-MHD fluid flows when the polar representation
of the streamline patterns for these flows are of the form (θ−f(r))/g(r)= constant.
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1. Introduction. The objective of this paper is to determine exact solutions of
steady, plane viscous incompressible magnetohydrodynamic (MHD) aligned and non-
MHD fluid flows when the polar representation of the streamline patterns for these
flows are of the form (θ−f(r))/g(r)= constant. These exact solutions are obtained
employing the approach first introduced by Martin [4] for plane viscous flows. This
approach involves using a natural curvilinear coordinate system (φ,ψ) in the physical
plane (x,y), whereψ= constant are the streamlines andφ= constant is an arbitrary
family of curves. Chandna and Labropulu [1] obtained the exact solutions of steady
plane viscous flows by taking the arbitrary family of curves φ = constant to be x =
constant. More recently, Labropulu and Chandna [3] studied steady plane MHD aligned
flows using this method by setting the arbitrary family of curves φ(x,y)= constant
to be either ξ(x,y) = constant or η(x,y) = constant, where ξ(x,y)+ iη(x,y) is an
analytic function of z = x+iy .
In this paper, we pose and answer the following two questions:
(i) Given a family of plane curves (θ−f(r))/g(r) = constant, can fluid flow along

these curves?
(ii) Given a family of streamlines (θ−f(r))/g(r)= constant, what is the exact inte-

gral of the flow defined by the given streamline pattern?
To investigate our first question, we assume that fluid flows along the given family
of curves (θ−f(r))/g(r)= constant. Since the streamfunction ψ(r ,θ)= constant as
well along these curves, it follows that there exists some function γ(ψ) such that

θ−f(r)
g(r)

= γ(ψ), γ′(ψ)≠ 0, (1.1)

where γ′(ψ) is the derivative of γ(ψ).
For this work, the curves φ = constant are taken to be r = constant. Thus, the

(r ,ψ)-coordinate system is used. Taking v1(r ,θ) and v2(r ,θ) to be the components

http://ijmms.hindawi.com
http://www.hindawi.com


450 F. LABROPULU AND O. P. CHANDNA

of velocity vector field in polar coordinates, we have

v1 = 1r
∂ψ
∂θ

= 1
rg(r)γ′(ψ)

, v2 =−∂ψ
∂r

= 1
γ′(ψ)

[
θg′(r)
g2(r)

+
(
f(r)
g(r)

)′]
. (1.2)

The plan of this paper is as follows: in Section 2, the equations governing the steady
plane motion of infinitely conducting aligned MHD, finitely conducting aligned MHD
and non-MHD fluid flows are presented. Section 3 shows the transformation of these
equations in the (φ,ψ)-net. In Section 4, we outline themethod of determiningwhether
a given family of curves can be the streamlines. Section 5 consists of applications of
this method.

2. Flow equations. The governing equations of a viscous incompressible and elec-
trically conducting fluid flow, in the presence of a magnetic field, are (see [5])

div �v = 0,
ρ
(
�v ·grad)�v+gradp = µ∇2�v+µ∗

(
curl �H

)× �H,

1
µ∗σ

curl
(
curl �H

)= curl(�v× �H
)
,

(2.1)

where �v is the velocity vector field, �H the magnetic field, p the pressure function,
and the constants ρ, µ, µ∗, and σ are the fluid density, coefficient of viscosity, mag-
netic permeability and the electrical conductivity, respectively. The magnetic field �H
satisfies an additional equation

div �H = 0, (2.2)

expressing the absence of magnetic poles in the flow. In the case of aligned (or parallel)
flows the magnetic field is everywhere parallel to the velocity field, so that

�H = β�v, (2.3)

where β is some unknown scalar function such that

�v ·gradβ= 0. (2.4)

In this paper, we study plane motion in the (x,y)-plane and we define the vorticity
function ω, current density function Ω, and energy function h given by

ω= ∂v
∂x

− ∂u
∂y

, Ω = ∂H2
∂x

− ∂H1
∂y

, h= 1
2
ρ
(
u2+v2

)+p, (2.5)

where u(x,y),v(x,y) are the velocity components and H1(x,y),H2(x,y) the mag-
netic components. In this work, we deal with both infinitely and finitely conducting
fluids. Third equation of system (2.1) is identically satisfied for an infinitely conduct-
ing MHD aligned flow. However, this equation requires the current density Ω to be a
constant, say Ω0, for a finitely conducting MHD aligned flow.
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2.1. Infinitely conducting flow. Using (2.3) and (2.5) in system (2.1), we find that
an infinitely conducting steady plane MHD aligned flow is governed by the following
system of six partial differential equations:

∂u
∂x

+ ∂v
∂y

= 0 (continuity),

∂h
∂x

+µ
∂ω
∂y

−ρvω+µ∗βvΩ = 0
∂h
∂y

−µ
∂ω
∂x

+ρuω−µ∗βuΩ = 0
(linear momentum),

u
∂β
∂x

+v
∂β
∂y

= 0 (solenoidal),

∂v
∂x

− ∂u
∂y

=ω (vorticity),

βω+v
∂β
∂x

−u
∂β
∂y

=Ω (current density)

(2.6)

for the six functions u(x,y),v(x,y),h(x,y),ω(x,y),Ω(x,y), and β(x,y). Once a
solution of this system is determined, the pressure function p(x,y) and the magnetic
vector field �H are found by using (2.3) and (2.5).

2.2. Finitely conducting and non-MHD flows. A finitely conducting steady plane
MHD aligned flow is governed by system (2.6) of six partial differential equations when
current density function Ω is replaced by constant Ω0 in this system.
Ordinary incompressible viscous flow in the absence of external forces is governed

by the continuity, the linear momentum and the vorticity equations of system (2.6)
when Ω = 0 and β= 0 are substituted in this system.

3. Alternate formulation. The equation of continuity in system (2.6) implies the
existence of a streamfunction ψ=ψ(x,y) such that

∂ψ
∂x

=−v,
∂ψ
∂y

=u. (3.1)

We takeφ(x,y)= constant to be some arbitrary family of curves which generates with
the streamlines ψ(x,y)= constant a curvilinear net, so that in the physical plane the
independent variables x,y can be replaced by φ,ψ.
Let

x = x(φ,ψ), y =y(φ,ψ), (3.2)

define a curvilinear net in the (x,y)-plane with the squared element of arc length
along any curve given by

ds2 = E(φ,ψ)dφ2+2F(φ,ψ)dφdψ+G(φ,ψ)dψ2, (3.3)

where

E =
(
∂x
∂φ

)2
+
(
∂y
∂φ

)2
, F = ∂x

∂φ
∂x
∂ψ

+ ∂y
∂φ

∂y
∂ψ

, G =
(
∂x
∂ψ

)2
+
(
∂y
∂ψ

)2
. (3.4)
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Equations (3.2) can be solved to obtain φ=φ(x,y), ψ=ψ(x,y) such that

∂x
∂φ

= J
∂ψ
∂y

,
∂x
∂ψ

=−J
∂φ
∂y

,
∂y
∂φ

=−J
∂ψ
∂x

,
∂y
∂ψ

= J
∂φ
∂x

, (3.5)

provided 0< |J|<∞, where J is the transformation Jacobian and,

J = ∂x
∂φ

∂y
∂ψ

− ∂x
∂ψ

∂y
∂φ

=±
√
EG−F2 =±W. (3.6)

3.1. Infinitely conducting flows. Following Martin [4] and Chandna and Labropulu
[1], we transform system (2.6) into the φψ-coordinates and we have the following
theorem.

Theorem 3.1. If the streamlines ψ(x,y) = constant of a viscous, incompressible
infinitely conducting MHD aligned flow are chosen as one set of coordinate curves in
a curvilinear coordinate system φ,ψ in the physical plane, then system (2.6) in (x,y)-
coordinates may be replaced by the system:

J
∂h
∂φ

= µ
[
F
∂ω
∂φ

−E
∂ω
∂ψ

]

J
∂h
∂ψ

= µ
[
G

∂ω
∂φ

−F
∂ω
∂ψ

]
+J

[
µ∗βΩ−ρω

] (linear momentum),

∂
∂ψ

(
W
E
Γ 211
)
− ∂

∂φ

(
W
E
Γ 212
)
= 0 (Gauss),

βω− E
W 2

∂β
∂ψ

=Ω (current density),

ω= 1
W

[
∂
∂φ

(
F
W

)
− ∂

∂ψ

(
E
W

)]
(vorticity),

∂β
∂φ

= 0 (solenoidal)

(3.7)

of six equations for seven functions E, F , G, h, j, ω, and β of φ, ψ.

The Christofell symbols Γ 211 and Γ
2
12 in system (3.7) are given by

Γ 211 =
1
2W 2

[
−F

∂E
∂φ

+2E ∂F
∂φ

−E
∂E
∂ψ

]
, Γ 212 =

1
2W 2

[
E
∂G
∂φ

−F
∂E
∂ψ

]
. (3.8)

Using the integrability condition ∂2h/∂φ∂ψ = ∂2h/∂ψ∂φ in the linear momen-
tum equations of Theorem 3.1, we find that the unknown functions E(φ,ψ),F(φ,ψ),
G(φ,ψ), Ω(φ,ψ),ω(φ,ψ), and β(ψ) satisfy the following equations:

ω= 1
W

[
∂
∂φ

(
F
W

)
− ∂

∂ψ

(
E
W

)]
, Ω = βω− E

W 2

∂β
∂ψ

, (3.9)

∂
∂ψ

(
W
E
Γ 211
)
− ∂

∂φ

(
W
E
Γ 212
)
= 0, (3.10)

µW∆2ω+ ∂
∂φ

[
µ∗βΩ−ρω

]= 0, ∂β
∂φ

= 0, (3.11)
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where

∆2ω= 1
W

[
∂
∂φ

(
G
W

∂ω
∂φ

− F
W

∂ω
∂ψ

)
+ ∂

∂ψ

(
E
W

∂ω
∂ψ

− F
W

∂ω
∂φ

)]
(3.12)

defines the Beltrami’s differential operator of second order.
Equations (3.9), (3.10), and (3.11) form an underdetermined system since the coor-

dinate lines φ= constant have been left arbitrary. This underdetermined system can
be made determinate in a number of different ways and one such possible way is to
let φ(x,y)= θ(x,y), where (r ,θ)-net is the polar coordinate system.

3.2. Finitely conducting and non-MHD flows. Finitely conducting MHD aligned
flow in the (φ,ψ)-net is governed by (3.9), (3.10), and (3.11) with Ω =Ω0, where Ω0 is
a constant.
Ordinary viscous flow is governed by (3.9), (3.10), and (3.11) with Ω = 0, β= 0, and

this reduced system is well studied by Martin [4] and Govindaraju [2].

4. Method. To analyze whether a given family of curves (θ−f(r))/g(r)= constant
can or cannot be the streamlines, we assume the affirmative so that there exists some
function γ(ψ) such that

θ−f(r)
g(r)

= γ(ψ), γ′(ψ)≠ 0, (4.1)

where γ′(ψ) is the derivative of the unknown function γ(ψ).
Using (4.1), φ= r and x = r cosθ, y = r sinθ, in (3.4), we find that E,F,G, and J are

given by

E = 1+r 2
[
f ′(r)+g′(r)γ(ψ)

]2, G = r 2g2(r)γ′2(ψ),

F = r 2
[
f ′(r)+g′(r)γ(ψ)

]
g(r)γ′(ψ), J =W = rg(r)γ′(ψ).

(4.2)

4.1. Infinitely conducting flow. Employing (4.2) and φ = r in (3.9), (3.10), and
(3.11), we find that Gauss’ equation (3.10) is identically satisfied and our flow is gov-
erned by

rg(r)γ′(ψ)
∂2ω
∂r 2

−2r[f ′(r)+g′(r)γ(ψ)
] ∂2ω
∂r∂ψ

+
[
1+r 2f ′2(r)

rg(r)
+ 2rf

′(r)g′(r)
g(r)

γ(ψ)+ rg′2(r)
g(r)

γ2(ψ)
]

1
γ′(ψ)

∂2ω
∂ψ2

+
[
−f ′(r)−rf ′′(r)+2r f ′(r)g′(r)

g(r)
+
(
2r

g′2(r)
g(r)

−g′(r)−rg′′(r)
)
γ(ψ)

−
(
1+r 2f ′2(ψ)

rg(r)

)
γ′′(ψ)
γ′2(ψ)

− 2rf
′(r)g′(r)
g(r)

γ(ψ)γ′′(ψ)
γ′2(ψ)

− rg′2(r)
g(r)

γ2(ψ)γ′′(ψ)
γ′2(ψ)

]
∂ω
∂ψ

+
[
g(r)γ′(ψ)− ρ

µ

]
∂ω
∂r

+ µ∗

µ
β(ψ)

∂Ω
∂r

= 0,

(4.3)
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ω=
[
1
r

f ′(r)
g(r)

+ f ′′(r)
g(r)

− 2f
′(r)g′(r)
g2(r)

]
1

γ′(ψ)

+
[
1
r

g′(r)
g(r)

+ g′′(r)
g(r)

− 2g
′2(r)

g2(r)

]
γ(ψ)
γ′(ψ)

+
[

1
r 2g2(r)

+ f ′2(r)
g2(r)

]
γ′′(ψ)
γ′3(ψ)

+ 2f
′(r)g′(r)
g2(r)

γ(ψ)γ′′(ψ)
γ′3(ψ)

+ g′2(r)
g2(r)

γ2(ψ)γ′′(ψ)
γ′3(ψ)

,

(4.4)

Ω = β(ψ)ω− 1+r 2
[
f ′(r)+g′(r)γ(ψ)

]2
r 2g2(r)γ′2(ψ)

β′(ψ) (4.5)

of three equations in four unknown functionsω,Ω,γ(ψ), and β(ψ). Equation (4.3), is
one equation in two unknown functions whenω and Ω are eliminated using (4.4) and
(4.5). Summing up, we have the following theorem.

Theorem 4.1. If a steady, plane, viscous, incompressible, electrically conducting
fluid of infinite electrical conductivity flows along (θ− f(r))/g(r) = constant in the
presence of an MHD aligned field, then the known functions f(r),g(r) and the un-
known functions β(ψ),γ(ψ) must satisfy (4.3), where ω and Ω are given by (4.4) and
(4.5), respectively.

4.2. Finitely conducting and non-MHD flows. In the case of finitely conducting
flows,Ω =Ω0 is an arbitrary constant. Using (4.4) in (4.3) and (4.5), we get two coupled
equations in unknown functions γ(ψ) and β(ψ) and, therefore, we have the following
theorem.

Theorem 4.2. If a steady, plane, viscous, incompressible, electrically conducting
fluid of finite electrical conductivity flows along (θ − f(r))/g(r) = constant, in the
presence of an aligned magnetic field, then the known functions f(r),g(r) and the
unknown functions β(ψ),γ(ψ) must satisfy

rg(r)γ′(ψ)
∂2ω
∂r 2

−2r[f ′(r)+g′(r)γ(ψ)
] ∂2ω
∂r∂ψ

+
[

1
rg(r)

+ rf ′2(r)
g(r)

+ 2rf
′(r)g′(r)
g(r)

γ(ψ)+ rg′2(r)
g(r)

γ2(ψ)
]

1
γ′(ψ)

∂2ω
∂ψ2

+
[
−f ′(r)−rf ′′(r)+2r f ′(r)g′(r)

g(r)
+
(
2r

g′2(r)
g(r)

−g′(r)−rg′′(r)
)
γ(ψ)

−
(

1
rg(r)

+ rf ′2(ψ)
g(r)

)
γ′′(ψ)
γ′2(ψ)

− 2rf
′(r)g′(r)
g(r)

γ(ψ)γ′′(ψ)
γ′2(ψ)

− rg′2(r)
g(r)

γ2(ψ)γ′′(ψ)
γ′2(ψ)

]
∂ω
∂ψ

+
[
g(r)γ′(ψ)− ρ

µ

]
∂ω
∂r

= 0,
(4.6)

β(ψ)ω− 1+r 2
[
f ′(r)+g′(r)γ(ψ)

]2
r 2g2(r)γ′2(ψ)

β′(ψ)=Ω0, (4.7)

where ω is given by (4.4).
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In the case of non-MHD fluid flow, Ω = β = 0, the known functions f(r),g(r) and
the unknown function γ(ψ) satisfy (4.6) with ω given by (4.4).

5. Applications. This section deals with various flows to illustrate the method.

Example 5.1 (Flow with θ−m1r 3−m2r 2 = constant as streamlines). We assume
that

θ =m1r 3+m2r 2+γ(ψ); γ′(ψ)≠ 0, m1 ≠ 0, (5.1)

where γ(ψ) is an unknown function of ψ.

Comparing (5.1) with (4.1), we have

f(r)=m1r 3+m2r 2, g(r)= 1. (5.2)

The streamline pattern for this flow is shown in Figure 5.1.

−2.0 −1.0 0.0 1.0 2.0
−2.0

−1.0

0.0

1.0

2.0
ψ=0
ψ=2
ψ=4
ψ=5

Figure 5.1. Streamline pattern for θ−m1r3−m2r2 =ψ.

Infinity conducting flow. Employing (4.4) and (4.5) in (4.3), we get

12∑
n=0,
n≠1,2

An(ψ)rn = 0, (5.3)
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where

A0(ψ)= 2
µ
M2(ψ)+M1(ψ)+ 4γ

′′(ψ)
γ′2(ψ)

,

A3(ψ)= 9m1−6m1

(
γ′′(ψ)
γ′3(ψ)

)′
− 9m1

µ
[
ρ−µ∗β2(ψ)

] 1
γ′(ψ)

,

A4(ψ)= 8m2
2M1(ψ)+32m2

2
γ′′(ψ)
γ′2(ψ)

− 8m
2
2

µ
M2(ψ),

A5(ψ)= 24m1m2M1(ψ)+216m1m2
γ′′(ψ)
γ′2(ψ)

− 36m1m2

µ
M2(ψ),

A6(ψ)= 18m2
1M1(ψ)−72m3

2

(
γ′′(ψ)
γ′3(ψ)

)′
+279m2

1
γ′′(ψ)
γ′2(ψ)

− 36m
2
1

µ
M2(ψ),

A7(ψ)=−360m1m2
2

(
γ′′(ψ)
γ′3(ψ)

)′
,

A8(ψ)= 16m4
2M1(ψ)−648m2

1m2

(
γ′′(ψ)
γ′3(ψ)

)′
,

A9(ψ)= 96m1m3
2M1(ψ)−378m3

1

(
γ′′(ψ)
γ′3(ψ)

)′
,

A10(ψ)= 216m2
1m

2
2M1(ψ),

A11(ψ)= 216m3
1m2M1(ψ),

A12(ψ)= 81m4
1M1(ψ),

M1(ψ)=
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
,

M2(ψ)= [ρ−µ∗β2(ψ)
] γ′′(ψ)
γ′3(ψ)

+µ∗
β(ψ)β′(ψ)

γ′2(ψ)
.

Equation (5.3) is a polynomial of degree 12 in r with coefficients as functions of ψ
only. Since r ,ψ are independent variables it follows that (5.3) can only hold true for
all values of r if the coefficients of different power of r vanish simultaneously and we
have

An(ψ)= 0, n= 0,3,4, . . . ,12. (5.4)

Usingm1 ≠ 0 and A12(ψ)= 0 in A9(ψ)= 0, we get
(
γ′′(ψ)
γ′3(ψ)

)′
= 0. (5.5)

Substituting (5.5) in A3(ψ)= 0, we have
1
µ
[
ρ−µ∗β2(ψ)

] 1
γ′(ψ)

−1= 0. (5.6)

Employing (5.5) and (5.6) in A0(ψ)= 0, we obtain

3
γ′′(ψ)
γ′2(ψ)

+ µ∗

µ
β(ψ)β′(ψ)

γ′2(ψ)
= 0. (5.7)
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Upon substitution of (5.5) to (5.7), A6(ψ)= 0 yields

γ′′(ψ)= 0 (5.8)

which upon integration with respect to ψ gives

γ(ψ)= a1ψ+ψ0, (5.9)

where a1 ≠ 0 and ψ0 are arbitrary constants. Using (5.9) in (5.7) and integrating the
resulting equation, we get β(ψ)= β0, where β0 ≠ 0 is an arbitrary constant. Employing
β(ψ)= β0 and (5.9) in (5.6), we get a1 = (1/µ)

[
ρ−µ∗β20

]
. Thus, the unknown functions

γ(ψ) and β(ψ) are given by

γ(ψ)= 1
µ
(
ρ−µ∗β20

)
ψ+ψ0, β(ψ)= β0, (5.10)

where ψ0 and β0 ≠
√
ρ/µ∗ are arbitrary constants. Using (5.1), (5.10), and v1 =

(1/r)(∂ψ/∂θ), v2 =−∂ψ/∂r , we find that the solutions are given by

v1 = µ
ρ−µ∗β20

1
r
, v2 = µ

ρ−µ∗β20

[
3m1r 2+2m2r

]
,

H1 = µβ0[
ρ−µ∗β20

][cosθ
r

−(3m1r 2+2m2r
)
sinθ

]
,

H2 = µβ0[
ρ−µ∗β20

][sinθ
r

+(3m1r 2+2m2r
)
cosθ

]
,

p = µ2(
ρ−µ∗β20

)2
[
9m2

1

4

(
ρ−3µ∗β20

)
r 4− ρ

2r 2
+2m2

2

(
ρ−2µ∗β20

)
r 2,

+2m1m2
(
2ρ−5µ∗β20

)
r 3−4m2

(
ρ−2µ∗β20

)(
θ−ψ0

)]+p0,

ω= µ[
ρ−µ∗β20

] [9m1r +2m2
]
, Ω = β0ω,

(5.11)

where p0 is an arbitrary constant. Since the pressure p must be a single-valued func-
tion, we must takem2 = 0.
Finitely conducting flow. Using (4.4) in (4.6) and (4.7), we get

12∑
n=0
n≠1,2

Bn(ψ)rn = 0, (5.12)

6∑
n=0
n≠1

Cn(ψ)rn = 0, (5.13)
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where

B0(ψ)= 2ρ
µ

γ′′(ψ)
γ′3(ψ)

+M1(ψ)+ 4γ
′′(ψ)

γ′2(ψ)
,

B3(ψ)= 9m1−6m1

(
γ′′(ψ)
γ′3(ψ)

)′
− 9m1ρ

µγ′(ψ)
,

B4(ψ)= 8m2
2M1(ψ)+32m2

2
γ′′(ψ)
γ′2(ψ)

− 8m
2
2ρ

µ
γ′′(ψ)
γ′3(ψ)

,

B5(ψ)= 24m1m2M1(ψ)+216m1m2
γ′′(ψ)
γ′2(ψ)

− 36m1m2ρ
µ

γ′′(ψ)
γ′3(ψ)

,

B6(ψ)= 18m2
1−72m3

2

(
γ′′(ψ)
γ′3(ψ)

)′
+279m2

1
γ′′(ψ)
γ′2(ψ)

− 36m
2
1ρ

µ
γ′′(ψ)
γ′3(ψ)

,

B7(ψ)=−360m1m2
2

(
γ′′(ψ)
γ′3(ψ)

)′
,

B8(ψ)= 16m4
2M1(ψ)−648m2

1m2

(
γ′′(ψ)
γ′3(ψ)

)′
,

B9(ψ)= 96m1m3
2M1(ψ)−378m3

1

(
γ′′(ψ)
γ′3(ψ)

)′
,

B10(ψ)= 216m2
1m

2
2M1(ψ),

B11(ψ)= 216m3
1m2M1(ψ),

B12(ψ)= 81m4
1M1(ψ),

M1(ψ)=
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
,

C0(ψ)= β(ψ)γ′′(ψ)
γ′3(ψ)

− β′(ψ)
γ′2(ψ)

, C2(ψ)= 4m2
β(ψ)
γ′(ψ)

−Ω0,

C3(ψ)= 9m1
β(ψ)
γ′(ψ)

, C4(ψ)= 4m2
2C0(ψ),

C5(ψ)= 12m1m2C0(ψ), C6(ψ)= 9m2
1C0(ψ).

(5.14)

Taking C3(ψ)= 0, we obtain

β(ψ)= 0. (5.15)

Thus, we conclude that this streamline pattern is not permissible for a finitely con-
ducting MHD aligned fluid flow.

Non-MHD flow. Employing (4.4) in (4.6), we have

12∑
n=0,
n≠1,2

Dn(ψ)rn = 0. (5.16)

Equation (5.16) is the same as (5.12) above with Dn(ψ) = Bn(ψ). Using the conse-
quence of D12(ψ)= 0 and D9(ψ)= 0 in D3(ψ)= 0, we get
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9m1− 9m1ρ
µ

1
γ′(ψ)

= 0 (5.17)

which implies that γ′(ψ)= ρ/µ. Thus, the unknown function γ(ψ) is given by

γ(ψ)= ρ
µ
ψ+ψ0, (5.18)

where ψ0 is an arbitrary constant of integration. The exact solutions are given by
(5.11) with β0 = 0. Summing up the above results, we have the following theorem.
Theorem 5.2. Streamline pattern θ−m1r 3−m2r 2 = constant is not permissible for

a finitely conducting MHD aligned flow but is permissible for an infinitely conducting
MHD aligned flowwith solutions given by (5.11) and non-MHD flows with solutions given
by (5.11) with β0 = 0.
Example 5.3 (Flow with θ−ar =constant as streamlines). We let the family of cur-

ves θ−ar = constant be the streamlines so that we have

θ = ar +γ(ψ), γ′(ψ)≠ 0, (5.19)

where γ(ψ) is some unknown function of ψ.

Comparing (5.19) with (4.1), we get

f(r)= ar, g(r)= 1. (5.20)

The streamline pattern for this flow is shown in Figure 5.2.

−20.0 −10.0 0.0 10.0 20.0
−20.0

−10.0

0.0

10.0

20.0 ψ=0
ψ=1
ψ=2

Figure 5.2. Streamline pattern for θ−ar =ψ.
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Infinitely conducting flow. Using (4.4) and (4.5) in (4.3), we obtain

4∑
n=0

An(ψ)rn = 0, (5.21)

where

A0(ψ)= 4γ
′′(ψ)

γ′2(ψ)
+
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+ 2

µ
[
ρ−µ∗β2(ψ)

] γ′′(ψ)
γ′3(ψ)

+ 2µ
µ∗

β(ψ)β′(ψ)
γ′2(ψ)

,

A1(ψ)= a+2a
(
γ′′(ψ)
γ′3(ψ)

)′
+ a

µ
[
ρ−µ∗β2(ψ)

] 1
γ′(ψ)

,

A2(ψ)=−a2
γ′′(ψ)
γ′2(ψ)

+2a2
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
,

A3(ψ)=−2a3
(
γ′′(ψ)
γ′3(ψ)

)′
, A4(ψ)= a4

[
1

γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
.

(5.22)

Equation (5.21) is a fourth degree polynomial in r with coefficients as functions of ψ
only. Since r ,ψ are independent variables it follows that (5.21) can only hold true for
all values of r if the coefficients of different powers of r vanish simultaneously and
we have

A0(ψ)=A1(ψ)=A2(ψ)=A3(ψ)=A4(ψ)= 0. (5.23)

Equation A3(ψ)= 0 holds true in one of the following three cases:
(i) a≠ 0, (γ′′(ψ)/γ′3(ψ))′ = 0,
(ii) a= 0, (γ′′(ψ)/γ′3(ψ))′ ≠ 0,

(iii) a= 0, (γ′′(ψ)/γ′3(ψ))′ = 0.
In the following, we study these three cases separately.
Case (i). In this case, all the coefficients An(ψ), n = 0,1, . . . ,4 vanish simultane-

ously if

γ(ψ)=−1
µ
(
ρ−µ∗β20

)
ψ+ψ0, β(ψ)= β0, (5.24)

where ψ0 and β0 ≠
√
ρ/µ∗ are arbitrary constants.

Using (5.24) in (5.19), we obtain

θ = ar − 1
µ
(
ρ−µ∗β20

)
ψ+ψ0, (5.25)

and the solutions for this flow are given by

v1 =− µ[
ρ−µ∗β20

]
r
, v2 =− aµ[

ρ−µ∗β20
] ,

H1 = µβ0[
ρ−µ∗β20

][asinθ− cosθ
r

]
, H2 =− µβ0[

ρ−µ∗β20
][acosθ+ sinθ

r

]
,

p = a2µ2(
ρ−µ∗β20

) lnr − ρµ2

2
(
ρ−µ∗β20

)2r 2 +p0, ω=− aµ[
ρ−µ∗β20

]
r
, Ω = β0ω,

(5.26)
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where p0 is an arbitrary constant. Thus, we have: θ−ar = constant is a permissible
streamline pattern for an infinitely conducting MHD aligned fluid flow and the exact
integral for this flow is given by (5.26).
Case (ii). In this case, An(ψ)= 0, n= 0,1, . . . ,4, are identically satisfied if

β2(ψ)= 1
µ∗

[
ρ−µγ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′
+4µγ′(ψ)+Bµγ′2(ψ)

]
, (5.27)

where B is an arbitrary constant of integration. Equation (5.27) is one equation in two
unknowns β(ψ) and γ(ψ) when (γ′′(ψ)/γ′3(ψ))′ ≠ 0. There are two ways of getting
solutions for this case. One way is to prescribe β(ψ) and solve (5.27) to get γ(ψ) and
the second way is to choose a γ(ψ) such that (γ′′(ψ)/γ′3(ψ))′ ≠ 0 and use (5.27) to
find β(ψ).
The exact solutions, for this flow, are given by

v1 = 1
rγ′(ψ)

, v2 = 0,

H1 = cosθr
β(ψ)
γ′(ψ)

, H2 = sinθr
β(ψ)
γ′(ψ)

,

p = 1
2r 2

[
µ

γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′
− ρ

γ′2(ψ)

]
+p0,

ω= 1
r 2

γ′′(ψ)
γ′3(ψ)

, Ω = β(ψ)ω− 1
r 2

β′(ψ)
γ′2(ψ)

,

(5.28)

where p0 is an arbitrary constant and β(ψ),γ(ψ) are arbitrary functions of ψ such
that (5.27) is satisfied.
Thus, we have: θ = constant is a permissible streamline pattern for steady plane

rotational infinitely conducting MHD aligned fluid flow and the exact integral for this
flow is given by (5.28), where β(ψ) and γ(ψ) are arbitrary functions of ψ such that
(5.27) and (γ′′(ψ)/γ′3(ψ))′ ≠ 0 are satisfied.
As an example, we take γ(ψ)= 6µ/ρψ. With this choice, equation (5.27) gives

β2(ψ)=− 1
µ∗

[
24µ2

ρψ2
+ 36µ

3B
ρ2ψ4

]
, (5.29)

and the solutions (5.28) take the form

v1 =− 6µ
ρrθ2

, v2 = 0,

H1 =−6µρr β(ψ)
cosθ
θ2

, H2 =−6µρr β(ψ)
sinθ
θ2

,

p = p0, ω=− 12µ
ρr 2θ3

, Ω = β(ψ)ω− 9µ
2β′(ψ)

ρ2r 2θ4
,

(5.30)

where β(ψ) is given by (5.29).
Case (iii). Integrating (γ′′(ψ)/γ′3(ψ))′ = 0 three times with respect to ψ, we find

that the function γ(ψ) is given implicitly by

c1γ2(ψ)+c2γ(ψ)+c3 =ψ, (5.31)
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where c1,c2, and c3 are arbitrary constants such that c1 and c2 are not zero simulta-
neously. Using (5.31) and a= 0 in An(ψ)= 0, n= 0,1, . . . ,4, we obtain

β2(ψ)= 1
µ∗
[
ρ+4µγ′(ψ)−µBγ′2(ψ)

]
, (5.32)

where γ(ψ) is given by (5.31) and B is an arbitrary constant of integration.
The exact solutions for this flow are given by

v1 = 1r
[
2c1θ+c2

]
, v2 = 0,

H1 = β(ψ)
r

(
2c1θ+c2

)
cosθ, H2 = β(ψ)

r
(
2c1θ+c2

)
sinθ,

p = p0− ρ
2r 2

[
2c1θ+c2

]2,
ω=−2c1

r 2
, Ω = β(ψ)ω− β′(ψ)

r 2
(
2c1θ+c2

)2,

(5.33)

where p0 is an arbitrary constant, γ(ψ) and β(ψ) are given by (5.31) and (5.32) re-
spectively. Since the pressure must be single-valued, we must take c1 = 0. If c1 = 0,
then the flow turns out to be irrotational.

Finitely conducting flow. Using (4.4) in (4.6) and (4.7), we get

4∑
n=0

Bn(ψ)rn = 0,
2∑

n=0
Cn(ψ)rn = 0, (5.34)

where

B0(ψ)= 4γ
′′(ψ)

γ′2(ψ)
+
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+ 2ρ

µ
γ′′(ψ)
γ′3(ψ)

,

B1(ψ)= a+2a
(
γ′′(ψ)
γ′3(ψ)

)′
+ aρ

µ
1

γ′(ψ)
,

B2(ψ)=−a2
γ′′(ψ)
γ′2(ψ)

+2a2
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
,

B3(ψ)=−2a3
(
γ′′(ψ)
γ′3(ψ)

)′
,

B4(ψ)= a4
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
,

C0(ψ)= β(ψ)γ′′(ψ)
γ′3(ψ)

− β′(ψ)
γ′2(ψ)

,

C1(ψ)= aβ(ψ)
γ′(ψ)

, C2(ψ)= a2
β(ψ)γ′′(ψ)

γ′3(ψ)
− a2β′(ψ)

γ′2(ψ)
−Ω0.

(5.35)

Equations (5.34) must hold true for all values of r . Since r ,ψ are independent vari-
ables, then we have

B0(ψ)= B1(ψ)= B2(ψ)= B3(ψ)= B4(ψ)= C0(ψ)= C1(ψ)= C2(ψ)= 0. (5.36)
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Requiring C1(ψ)= 0, we have
a= 0 (5.37)

since β(ψ)≠ 0. Using a= 0, the equations B1(ψ)= 0, B2(ψ)= 0, B3(ψ)= 0, B4(ψ)= 0
are identically satisfied and B0(ψ)= 0, C0(ψ)= 0, C2(ψ)= 0 give

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′
− 4

γ′(ψ)
− ρ

µ
1

γ′2(ψ)
=ψ0,

β2(ψ)= β0γ′
2(ψ), Ω0 = 0,

(5.38)

where ψ0 and β0 are arbitrary constants integration. Proceeding as in infinitely con-
ducting flow, we find that the exact solutions for this flow are given by

v1 = 1
rγ′(ψ)

, v2 = 0,

H1 = cosθr
β(ψ)
γ′(ψ)

, H2 = sinθr
β(ψ)
γ′(ψ)

,

p = 1
2r 2

[
µ

γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′
− ρ

γ′2(ψ)

]
+p0, ω= 1

r 2
γ′′(ψ)
γ′3(ψ)

,

(5.39)

where p0 is an arbitrary constant and γ(ψ),β(ψ) are given by (5.38). Thus, we have:
θ = constant is a permissible streamline pattern for a finitely conducting MHD aligned
fluid flow and the exact solutions of this flow are given by (5.39) with γ(ψ) and β(ψ)
given by (5.38).

Non-MHD flow. Employing (4.4) in (4.6), we obtain

4∑
n=0

Dn(ψ)rn = 0, (5.40)

where

D0(ψ)= 4γ
′′(ψ)

γ′2(ψ)
+
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+ 2ρ

µ
γ′′(ψ)
γ′3(ψ)

,

D1(ψ)= a+2a
(
γ′′(ψ)
γ′3(ψ)

)′
+ aρ

µ
1

γ′(ψ)
,

D2(ψ)=−a2
γ′′(ψ)
γ′2(ψ)

+2a2
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
,

D3(ψ)=−2a3
(
γ′′(ψ)
γ′3(ψ)

)′
, D4(ψ)= a4

[
1

γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
.

(5.41)

Since r andψ are independent variables and (5.40) is a fourth-degree polynomial with
coefficients as functions of ψ only, then we must have

D0(ψ)=D1(ψ)=D2(ψ)=D3(ψ)=D4(ψ)= 0. (5.42)

Requiring D3(ψ)= 0, we get the following three cases:
(i) a≠ 0, (γ′′(ψ)/γ′3(ψ))′ = 0,
(ii) a= 0, (γ′′(ψ)/γ′3(ψ))′ ≠ 0,

(iii) a= 0, (γ′′(ψ)/γ′3(ψ))′ = 0.
We study these three cases separately as follows.
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Case (i). Using (γ′′(ψ)/γ′3(ψ))′ = 0, in D0(ψ) = 0, D1(ψ) = 0, D2(ψ) = 0, and in
D4(ψ)= 0, we have

γ(ψ)=−ρ
µ
ψ+ψ0, (5.43)

whereψ0 is an arbitrary constant. In this case, solutions are given by (5.26) with β0 = 0.
Case (ii). With a = 0, equations D1(ψ) = 0, D2(ψ) = 0, and D4(ψ) = 0 are identi-

cally satisfied and D0(ψ)= 0 gives

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′
− 4

γ′(ψ)
− ρ

µ
1

γ′2(ψ)
=ψ0, (5.44)

where ψ0 is an arbitrary constant. For this case, exact solutions are given by (5.28)
with β(ψ)= 0.
Case (iii). For this case, equations (5.42) are identically satisfied if

γ(ψ)= c1ψ+c2, (5.45)

where c1 ≠ 0 and c2 are arbitrary constants. The solutions for this case are given by

v1 = 1
c1r

, v2 = 0, p = p0− ρ
2c21r 2

, ω= 0, (5.46)

where p0 is an arbitrary constant.
Summing up, we have the following theorem.

Theorem 5.4. Streamline pattern θ −ar = constant in a steady plane motion is
permissible for an infinitely conducting MHD aligned and non-MHD fluid flow. It is also
permissible for a finitely conducting MHD aligned flow if a= 0.
Example 5.5 (Flow with θ−a1rm−a2 lnr = constant as streamlines). We assume

θ = a1rm+a2 lnr +γ(ψ); γ′(ψ)≠ 0, (5.47)

where a1,a2, andm are arbitrary constants and, therefore, we have

f(r)= a1rm+a2 lnr , g(r)= 1. (5.48)

The streamline pattern for this flow is shown in Figure 5.3.

Infinitely conducting flow. Proceeding as in Example 5.5, we find that the
functions γ(ψ) and β(ψ) must satisfy

4∑
n=0

An(ψ)rnm−3 = 0, (5.49)
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−2.0 −1.0 0.0 1.0 2.0
−2.0

−1.0

0.0

1.0

2.0

ψ=0
ψ=2
ψ=4

Figure 5.3. Streamline pattern for θ−a1rm−a2 lnr =ψ,m= 3.

where

A0(ψ)= (1+a22
)2[ 1

γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+4a2

(
1+a22

)( γ′′(ψ)
γ′3(ψ)

)′

+4(1+a22
) γ′′(ψ)
γ′2(ψ)

+ 2
µ
(
1+a22

)[(
ρ−µ∗β2(ψ)

) γ′′(ψ)
γ′3(ψ)

+µ∗
β(ψ)β′(ψ)

γ′2(ψ)

]
,

A1(ψ)= 4ma1a2
(
1+a22

)[ 1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+a1a2m

(
2m2−7m+10) γ′′(ψ)

γ′2(ψ)

−2a1m(m−2)(1+3a22)
(
γ′′(ψ)
γ′3(ψ)

)′
− µ∗

µ
a1a2m(m−2)β(ψ)β′(ψ)

γ′2(ψ)

− 1
µ
a1m(m−2)[ρ−µ∗β2(ψ)

][ m
γ′(ψ)

+a2
γ′′(ψ)
γ′3(ψ)

]
+a1m2(m−2)2,

A2(ψ)= 2a21m2(1+3a22)
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′

−12a21a2m2(m−1)
(
γ′′(ψ)
γ′3(ψ)

)′
+a21m

2(5m2−6m+4) γ′′(ψ)
γ′2(ψ)

− 2
µ
a21m

2(m−1)
[(

ρ−µ∗β2(ψ)
) γ′′(ψ)
γ′3(ψ)

+µ∗
β(ψ)β′(ψ)

γ′2(ψ)

]
,

A3(ψ)= 4a31a2m3
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
−2a31m3(3m−2)

(
γ′′(ψ)
γ′3(ψ)

)′
,

A4(ψ)= a21m
4
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
.

(5.50)
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Equation (5.49) holds true for all values of r provided all coefficients vanish simulta-
neously and we have

A0(ψ)=A1(ψ)=A2(ψ)=A3(ψ)=A4(ψ)= 0. (5.51)

In particular, A1(ψ)= 0, A2(ψ)= 0, A3(ψ)= 0, and A4(ψ)= 0 are identically satisfied
in one of the following four cases:
(a) a1 ≠ 0,m≠ 2, γ′(ψ)= (1/µ(m−2))(ρ−µ∗β20), β(ψ)= β0, β0 ≠

√
ρ/µ∗,

(b) γ′′(ψ)= 0, a1 ≠ 0,m= 2, β(ψ)= β0,

(c) a1 = 0, [(1/γ′(ψ))(γ′′(ψ)/γ′3(ψ))′]′ ≠ 0,

(d) a1 = 0, [(1/γ′(ψ))(γ′′(ψ)/γ′3(ψ))′]′ = 0.
We study these four cases separately as follows.
Case (a). In this case, A0(ψ) = 0 is identically satisfied and we have: θ−a1rm−

a2 lnr = constant withm≠ 2 is a permissible streamline pattern and the exact integral
for this flow is given by

v1 = µ(m−2)
r
[
ρ−µ∗β20

] , v2 = µ(m−2)
ρ−µ∗β20

[
ma1rm−1+ a2

r

]
,

H1 = µβ0(m−2)
ρ−µβ20

[
cosθ−a2 sinθ

r
−ma1rm−1 sinθ

]
,

H2 = µβ0(m−2)
ρ−µβ20

[
sinθ+a2 cosθ

r
+ma1rm−1 cosθ

]
,

p =




µ2a1m2(m−2)2
ρ−µ∗β20

[
a1m

2(m−1)r
2m−2+ a2

m−2r
m−2

]

−1
2
ρ

µ2(m−2)2(
ρ−µ∗β20

)2
(
1+a22
r 2

+m2a21r
2m−2+2ma1a2rm−2

)
+p0; m≠ 1,

µ2a1
ρ−µ∗β20

[
a1 lnr − a2

r

]
− 1
2
ρ

µ2(
ρ−µ∗β20

)2
(
1+a22
r 2

+ 2a1a2
r

)
+p0; m= 1,

ω= µm2(m−2)a1
ρ−µβ20

rm−2, Ω = β0ω,

(5.52)

where p0 is an arbitrary constant of integration andm≠ 2.
Case (b). Since γ′′(ψ)= 0, then we get

γ(ψ)= b1ψ+b2, (5.53)

where b1 ≠ 0 and b2 are arbitrary constants. Using β(ψ) = β0 and (5.53), A0(ψ) is
identically satisfied and we have: θ−a1r 2−a2 lnr = constant is a possible streamline
pattern and the exact integral associated with this flow is given by
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v1 = 1
b1r

, v2 = 1
b1

[
2a1r + a2

r

]
,

H1 = β0
b1

[
cosθ−a2 sinθ

r
−2a1r sinθ

]
,

H2 = β0
b1

[
sinθ+a2 cosθ

r
+2a1r cosθ

]
,

p = p0− 4a1b21

(
ρ−µ∗β20

)[
θ−a1r 2−a2 lnr −b2

]− 1
2

ρ
b21

[
1+a22
r 2

+4a21r 2+4a1a2
]
,

ω= 4a1
b1

, Ω = β0ω,

(5.54)

where p0 is an arbitrary constant. Since the pressure function pmust be single-valued,
we must take β20 = ρ/µ∗.
Case (c). All coefficients An(ψ), n= 0,1, . . . ,4 vanish simultaneously if

β2(ψ)= µ
µ∗

(
4γ′(ψ)−(1+a22

)
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′
−4a2 γ

′′(ψ)
γ′(ψ)

−b3γ′
2(ψ)+ ρ

µ

)
,

(5.55)

where b3 is an arbitrary constant and γ(ψ) is an arbitrary function of ψ such that
[(1/γ′(ψ))(γ′′(ψ)/γ′3(ψ))′]′ ≠ 0. Thus, θ−a2 lnr = constant can serve as streamline
pattern and the exact integral for this rotational flow is given by

v1 = 1
rγ′(ψ)

, v2 = a2
rγ′(ψ)

,

H1 = cosθ−a2 sinθ
r

β(ψ)
γ′(ψ)

, H2 = sinθ+a2 cosθ
r

β(ψ)
γ′(ψ)

,

p = µ
2

(
1+a22

) 1
r 2

[
2a2

γ′′(ψ)
γ′3(ψ)

+(1+a22
) 1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]
− 1
2

ρ
γ′2(ψ)

1+a22
r 2

+p0,

ω= 1+a22
r 2

γ′′(ψ)
γ′3(ψ)

, Ω = β(ψ)ω− 1+a22
r 2

β′(ψ)
γ′2(ψ)

,

(5.56)

where p0 is an arbitrary constant, β(ψ) is given by (5.55) and γ(ψ) is an arbitrary
function of ψ.
Case (d). Integrating [(1/γ′(ψ))(γ′′(ψ)/γ′3(ψ))′]′ = 0 four times with respect to

ψ, we obtain

c1γ3(ψ)+c2γ2(ψ)+c3γ(ψ)+c4 =ψ, (5.57)

where c1,c2,c3, and c4 are arbitrary constants of integration such that c1,c2, and c3
are not zero simultaneously. Using a1 = 0 and [(1/γ′(ψ))(γ′′(ψ)/γ′3(ψ))′]′ = 0 in
A0(ψ)= 0 and integrating the resulting equation with respect to ψ, we get
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β2(ψ)= µ
µ∗

[
4γ′(ψ)−4a2 γ

′′(ψ)
γ′(ψ)

+ ρ
µ
+c5γ′

2(ψ)
]
, (5.58)

where c5 is an arbitrary constant of integration and γ(ψ) is given implicitly by (5.57).
The exact solutions for this flow are given by

v1 = 1r
[
3c1

(
θ−a2 lnr

)2+2c2(θ−a2 lnr
)+c3

]
,

v2 = a2
r
[
3c1

(
θ−a2 lnr

)2+2c2(θ−a2 lnr
)+c3

]
,

H1 = cosθ−a2 sinθ
r

β(ψ)
[
3c1

(
θ−a2 lnr

)2+2c2(θ−a2 lnr
)+c3

]
,

H2 = sinθ+a2 cosθ
r

β(ψ)
[
3c1

(
θ−a2 lnr

)2+2c2(θ−a2 lnr
)+c3

]
,

p = (1+a22
) 1
r 2
(−µa2

[
6c1

(
θ−a2 lnr

)+2c2]−3µ(1+a22
)
c1

−ρ
[
9c21

(
θ−a2 lnr

)4+12c1c2(θ−a2 lnr
)3+4c2c3(θ−a2 lnr

)
+(6c1c3+4c22)(θ−a2 lnr

)2+c23
])+p0,

ω=−1+a22
r 2

[
6c2

(
θ−a2 lnr

)+2c2],
Ω = β(ψ)ω− 1+a22

r 2
β′(ψ)

[
3c1

(
θ−a2 lnr

)2+2c2(θ−a2 lnr
)+c3

]2,
(5.59)

where p0 is an arbitrary constant of integration and β(ψ) is given by (5.58). Since the
pressure function must be single-valued, we must take c1 = c2 = 0. If c1 = c2 = 0, then
ω= 0 and the flow is irrotational.
Finitely conducting flow. Employing (4.4) in (4.6) and (4.7), we get

4∑
n=0

Bn(ψ)rnm−3 = 0,
2∑

n=0
Cn(ψ)rnm−2+C3(ψ)= 0, (5.60)

where

B0(ψ)= (1+a22
)2[ 1

γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+4a2

(
1+a22

)( γ′′(ψ)
γ′3(ψ)

)′

+4(1+a22
) γ′′(ψ)
γ′2(ψ)

+ 2ρ
µ

γ′′(ψ)
γ′3(ψ)

,

B1(ψ)= 4ma1a2
(
1+a22

)[ 1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+a1a2m

(
2m2−7m+10) γ′′(ψ)

γ′2(ψ)

−2a1m(m−2)(1+3a22)
(
γ′′(ψ)
γ′3(ψ)

)′
+a1m2(m−2)2

− a1mρ
µ

(m−2)
[

m
γ′(ψ)

+a2
γ′′(ψ)
γ′3(ψ)

]
,
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B2(ψ)= 2a21m2(1+3a22)
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
−12a21a2m2(m−1)

(
γ′′(ψ)
γ′3(ψ)

)′

+a21m
2(5m2−6m+4) γ′′(ψ)

γ′2(ψ)
− 2ρ

µ
a21m

2(m−1) γ
′′(ψ)

γ′3(ψ)
,

B3(ψ)= 4a31a2m3
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
−2a31m3(3m−2)

(
γ′′(ψ)
γ′3(ψ)

)′
,

B4(ψ)= a21m
4
[

1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
,

C0(ψ)= (1+a22
)[β(ψ)γ′′(ψ)

γ′3(ψ)
− β′(ψ)

γ′2(ψ)

]
,

C1(ψ)= a1m2 β(ψ)
γ′(ψ)

+2a1a2m
[
β(ψ)γ′′(ψ)

γ′3(ψ)
− β′(ψ)

γ′2(ψ)

]
,

C2(ψ)= a21m
2
[
β(ψ)γ′′(ψ)

γ′3(ψ)
− β′(ψ)

γ′2(ψ)

]
, C3(ψ)=−Ω0.

(5.61)

Requiring (5.60) to hold true for all values of r , we get

Bi(ψ)= Cj(ψ)= 0, i= 0,1,2,3,4, j = 0,1,2,3. (5.62)

From C3(ψ)= 0 and C0(ψ)= 0, we have

Ω0 = 0 and β(ψ)= k1γ′(ψ)+k2, (5.63)

respectively, where k1 and k2 are arbitrary constants of integration. Using (5.63) in
C1(ψ)= 0, we obtain

a1 = 0. (5.64)

Employing (5.64), we find that Bi(ψ)= 0, i= 0,1,2,3,4 are identically satisfied if
(
1+a22

)[ 1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+4a2

(
γ′′(ψ)
γ′3(ψ)

)′
+4 γ′′(ψ)

γ′2(ψ)
+ 2ρ

µ
γ′′(ψ)
γ′3(ψ)

= 0. (5.65)

Thus, the exact solutions for finitely conducting flow are given by

v1 = 1
rγ′(ψ)

, v2 = a2
rγ′(ψ)

,

H1 = cosθ−a2 sinθ
r

β(ψ)
γ′(ψ)

, H2 = sinθ+a2 cosθ
r

β(ψ)
γ′(ψ)

,

p = µ
2r 2

(
1+a22

)[
2a2

γ′′(ψ)
γ′3(ψ)

+(1+a22
) 1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]
− 1
2
ρ
1+a22

r 2γ′2(ψ)
+p0,

ω= 1+a22
r 2

γ′′(ψ)
γ′3(ψ)

, Ω = β(ψ)ω− 1+a22
r 2

β′(ψ)
γ′2(ψ)

,

(5.66)

where p0 is an arbitrary constant, β(ψ) is given by (5.63) and γ(ψ) is given by (5.65).
Since the pressure function should be single-valued, the function γ(ψ) must also



470 F. LABROPULU AND O. P. CHANDNA

satisfy the following equation:

2µa2
(
γ′′(ψ)
γ′3(ψ)

)′
+µ

(
1+a22

)[ 1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+ 2ργ

′′(ψ)
γ′3(ψ)

= 0. (5.67)

Using this equation and (5.65), we find that γ′′(ψ)= 0 and the flow is irrotational.
Non-MHD flow. Substituting (4.4) in (4.6), we obtain

4∑
n=0

Dn(ψ)rnm−3 = 0, (5.68)

where Dn(ψ) are given by Bn(ψ) of the finitely conducting case. The coefficients
Dn(ψ), n= 1, . . . ,4 vanish simultaneously in one of the following four cases:
(a) a1 ≠ 0,m≠ 2, γ′(ψ)= ρ/µ(m−2),
(b) a1 ≠ 0,m= 2, γ′′(ψ)= 0,
(c) a1 = 0, [(1/γ′(ψ))(γ′′(ψ)/γ′3(ψ))′]′ ≠ 0,

(d) a1 = 0, [(1/γ′(ψ))(γ′′(ψ)/γ′3(ψ))′]′ = 0.
We study these four cases separately as follows:
Case (a). In this case D0(ψ)= 0 is also satisfied and the exact integral is given by

(5.52) with β0 = 0.
Case (b). Since γ′′(ψ)= 0, we get

γ(ψ)= b1ψ+b2, (5.69)

where b1 ≠ 0 and b2 are arbitrary constants. Using γ′′(ψ)= 0,D0(ψ)= 0 is identically
satisfied and the exact solutions are given by (5.54) with β0 = 0.
Case (c). All coefficients Dn(ψ), n= 0,1, . . . ,4 vanish simultaneously if
(
1+a22

)[ 1
γ′(ψ)

(
γ′′(ψ)
γ′3(ψ)

)′]′
+4a2

(
γ′′(ψ)
γ′3(ψ)

)′
+4 γ′′(ψ)

γ′2v(ψ)
+ 2ρ

µ
γ′′(ψ)
γ′3(ψ)

= 0, (5.70)

and the exact solutions are given by (5.56) with β(ψ)= 0 and γ(ψ) given by (5.70).
Case (d). Integrating [(1/γ′(ψ))(γ′′(ψ)/γ′3(ψ))′]′ = 0 four times with respect to

ψ, we obtain

c1γ3(ψ)+c2γ2(ψ)+c3γ(ψ)+c4 =ψ, (5.71)

where c1,c2,c3, and c4 are arbitrary constants such that c1,c2, and c3 are not equal to
zero simultaneously. Using (5.71) in D0(ψ)= 0, we get

c1 = c2 = 0, (5.72)

and the exact integral for this irrotational flow is given by (5.59) with β(ψ) = 0 and
γ′(ψ)= 1/c3.
Summing up, we have the following theorem.

Theorem 5.6. The streamline pattern θ−a1rm−a2 lnr = constant is permissible
for an infinitely conducting MHD aligned, a finitely conducting MHD aligned with a1 = 0
and for non-MHD fluid flows.
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Example 5.7 (Flow with θ−rm = constant as streamlines). We let

θ−rm = γ(ψ), (5.73)

and we find that

γ(ψ)=



1
µ(m−2)

[
ρ−µ∗β20

]
ψ+ψ0, m≠ 2,

aψ+b, m= 2,

β(ψ)=



β0, β0 ≠

√
ρ
µ∗

, m≠ 2,

β0, m= 2,

v1 =




µ(m−2)[
ρ−µ∗β20

]
r
, m≠ 2,

1
ar

, m= 2,

v2 =




µm(m−2)
ρ−µ∗β20

rm−1, m≠ 2,

2r
a

, m= 2,

H1 =




µ(m−2)β0
ρ−µ∗β20

[
cosθ
r

−mrm−1 sinθ
]
, m≠ 2,

1
a

[
cosθ
r

−2r sinθ
]
, m= 2,

H2 =




µ(m−2)β0
ρ−µ∗β20

[
sinθ
r

+mrm−1 cosθ
]
, m≠ 2,

1
a

[
sinθ
r

+2r cosθ
]
, m= 2,

p=




µ2m3(m−2)2
2(m−1)(ρ−µ∗β20

)r 2m−2− ρµ2(m−2)2
2
(
ρ−µ∗β20

)2
[
1
r 2
+m2r 2m−2

]
+p0, m≠ 2, m≠ 1,

µ2

ρ−µ∗β20
lnr − ρµ2

2
(
ρ−µ∗β20

)2r 2 +p0, m≠ 2, m= 1,

p0− 4
a2
(
ρ−µ∗β20

)[
θ−r 2−b

]− ρ
2a2

[
1
r 2
+4r 2

]
, m= 2,

ω=




µm(m−2)
ρ−µ∗β20

rm−2, m≠ 2,

4
a
, m= 2,

Ω = β0ω,
(5.74)

where ψ0, β0 ≠ 0, a ≠ 0, b, and p0 are arbitrary constants. The streamline pattern is
given in Figure 5.4.
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2.0

ψ=0
ψ=2
ψ=4

Figure 5.4. Streamline pattern for θ−rm =ψ,m= 4.

Example 5.8 (Flow with θ−a1r 2−a2r = constant as streamlines). We take

θ−a1r 2−a2r = γ(ψ), (5.75)

and we have

γ(ψ)=−1
µ
[
ρ−µ∗β20

]
ψ+ψ0, β(ψ)= β0, β0 ≠

√
ρ
µ∗

,

v1 =− µ[
ρ−µ∗β20

]
r
, v2 =− µ[

ρ−µ∗β20
](2a1r +a2

)
,

H1 =− µβ0[
ρ−µ∗β20

][cosθ
r

−(2a1r +a2
)
sinθ

]
,

H2 =− µβ0[
ρ−µ∗β20

][sinθ
r

+(2a1r +a2
)
cosθ

]
,

p = µ2[
ρ−µ∗β20

] [6a1a2r +a22 lnr −4a1
(
θ−a1r 2−ψ0

)]

− ρµ2

2
[
ρ−µ∗β20

]2
[
1
r 2
+4a21r 2+4a1a2r +a22

]
+p0,

ω=− µ[
ρ−µ∗β20

][4a1+ a2
r

]
, Ω = β0ω,

(5.76)

where ψ0,β0 ≠
√
ρ/µ∗, and p0 are arbitrary constants. Figure 5.5 shows the flow pat-

tern for this example.
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ψ=4

Figure 5.5. Streamline pattern for θ−a1r2−a2r =ψ.

Example 5.9 (Flow with θ−a1(lnr)2−a2 lnr=constant as streamlines).We assume
that

θ−a1(lnr)2−a2 lnr = γ(ψ), (5.77)

and we have

γ(ψ)=− 1
2µ
[
ρ−µ∗β20

]
ψ+ψ0, β(ψ)= β0,

v1 =− 2µ[
ρ−µ∗β20

]
r
, v2 =− 2µ[

ρ−µ∗β20
][2a1 lnr

r
+ a2

r

]
,

H1 =− 2µβ0[
ρ−µ∗β20

]
r
[
cosθ−(2a1 lnr +a2

)
sinθ

]
,

H2 =− 2µβ0[
ρ−µ∗β20

]
r
[
sinθ+(2a1 lnr +a2

)
cosθ

]
,

p =− 4µ2a1[
ρ−µ∗β20

]
r 2
[
2a1 lnr +a1+a2

]− 2µ2ρ[
ρ−µ∗β2

]2r 2
[
1+(2a1 lnr +a2

)2]+p0,

ω=− 4µa1[
ρ−µ∗β20

]
r 2

, Ω = β0ω,

(5.78)

where p0 and β0 ≠
√
ρ/µ∗ are arbitrary constants. The flow pattern is shown in

Figure 5.6.

Example 5.10 (Flow with r 2θ = constant as streamlines). We let

r 2θ = γ(ψ) (5.79)
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Figure 5.6. Streamline pattern for θ−a1(lnr)2−a2 lnr =ψ.
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Figure 5.7. Streamline pattern for r2θ =ψ.

and we have

γ(ψ)= a1ψ+a2, β(ψ)=
√

ρ
µ∗

,
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v1 = r
a1

, v2 =−2rθa1
,

H1 =
√

ρ
µ∗

r
a1

[
cosθ+2θsinθ], H2 =

√
ρ
µ∗

r
a1

[
sinθ−2θcosθ], (5.80)

p = 4µ
a1
lnr − ρr 2

2a21

(
1+4θ2)+p0,

ω=−4θ
a1

, Ω =
√

ρ
µ∗

ω,

where a1 ≠ 0, a2, and p0 are arbitrary constants. The streamlines are shown in
Figure 5.7.
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