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Abstract. Some congruence properties of the partition function are proved.
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1. Introduction and statement of results. A partition of n is defined to be a non-
increasing set of positive integers whose sum isn. The unrestricted partition function,
or p(n), is defined to be the number of partitions of n.

Example 1.1. The partitions of 3 are 3, 2+1, 1+1+1, and so

p(3)= 3. (1.1)

This function has been of interest since S. Ramanujan first studied it 80 years ago.
He proved that for any non-negative integer n that

p(5n+4)≡ 0 (mod5),
p(7n+5)≡ 0 (mod7),
p(11n+6)≡ 0 (mod11).

(1.2)

If one were to examine in any detail the values of p(n) for any set of n, it would
become obvious that these congruences are unexpected and rare. In fact, K. Ono has
begun the process of quantifying their rarity (see [4] and [3]).
The first to show that there are infinitely many even and odd values of the partition

function was Kolberg [1]. However, other conjectures exist regarding the parity of the
partition function.

Conjecture 1.2 [5]. In every arithmetic progression r (modt) there are infinitely
many integers N ≡ r (modt) for which p(N) is even, and there are infinitely many
integers M ≡ r (modt) for which p(M) is odd.
In [3], Ono went some way towards resolving Subbarao’s conjecture.

Theorem 1.3. For any arithmetic progression r (modt) there are infinitely many
integers N ≡ r (modt) for which p(N) is even.

Theorem 1.4. For any arithmetic progression r (modt), there are infinitely many
integers M ≡ r (modt) for which p(M)is odd, provided there is one such M.

As is seen in Theorem 1.4, the odd case of Subbarao’s conjecture remains open.
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The first result we obtain in this paper is the following theorem. This theorem pro-
vides us, for the first time, with an explicit infinite set of non-trivial cases of Subbarao’s
conjecture in the odd case.

Theorem 1.5. For all primes l > 3, in any progression kl (mod ln), where 0 ≤ k ≤
ln−1−1 and n is any positive integer, there are infinitely many M ≡ kl (mod ln) where
p(M) is odd.

However, we are interested in more than just the parity of the partition function. As
shown in [4], congruences like Ramanujan’s are indeed rare, but there are few concrete
results that detail precise infinite families of progressions that do not possess similar
congruence properties. Our next result, the following theorem, gives us an example
of such a family of progressions.

Theorem 1.6. For all primes l > 3 in any progression kl (mod ln−1), where 0≤ k≤
ln−1 and n is any positive integer, there are infinitely many M ≡ kl (mod ln) where
p(M) is not congruent to 0 (mod l).

Example 1.7. In order to illustrate the conclusions of Theorems 1.5 and 1.6, let l=
5 and n= 3. Now let r be any of the numbers 0,5,10,15,20, . . . ,120. By Theorem 1.5,
we know that there are infinitely many non-negative integers n for which p(125n+r)
is odd. By Theorem 1.6, there are infinitely many non-negative integers n for which
p(125n+r) is not divisible by 5.

2. Proof of Theorems 1.5 and 1.6. Before we begin the discussion of the two main
theorems of this paper, we must present the following three theorems that will be
used in their proofs. First it is necessary to discuss Hensel’s lemma [2].

Hensel’s Lemma. Suppose f(x) is a polynomial with integral coefficients. If there
is an integer a and a prime p such that f(a)≡ 0 (modpj) and f ′(a) is not congruent
to 0 (modp), then there is a unique t (modp) such that f(a+tpj)≡ 0 (modpj+1).
This theorem allows us to establish the solvability of a congruence (modpj+1) by

its solvability (modpj).
In [4], Ono proves the following two theorems.

Theorem 2.1. Let 0≤ r < t be integers for which gcd(24r −1, t)= 1. If an integer
n exists such that n≡ r (modt) for which p(n) is odd, then for every integer s coprime
to 24t there are infinitely manyM ≡ s2(r−24−1)+24−1 (modt) for which p(M) is odd.

Theorem 2.2. Let 0 ≤ r < t be integers for which gcd(24r − 1, t) = 1 and let l
be an odd prime. If an integer n exists such that n ≡ r modt for which p(n) is not
congruent to 0 (mod l) then for every integer s coprime to 24t there exists infinitely
many M ≡ s2(r −24−1)+24−1 (modt) for which p(M) is not congruent to 0 (mod l).
These theorems relate directly to the question of the parity and congruences of

the partition function. As explained in the preceding section, it is known that there
are infinitely many integers n ≡ r (modt) where p(n) is even and infinitely many
n ≡ r (modt) for which p(n) is odd, providing that there is at least one such n.
Theorem 1.5 allows us to determine some cases where such an odd p(n) exists.
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Proof of Theorem 1.5. In Theorem 2.1, first note that p(0)= 1. Let n,r = 0 and
let t = ln. Then for any ln, gcd(−1, t) = 1, so the first condition is fulfilled. Now, we
know that for every s coprime to 24t, there exists infinitely many M ≡ s2(r −24−1)+
24−1 (modt) for whichM is odd. Substituting values, we see that there exists infinitely
many M ≡ −24−1(s2−1) (mod ln) for s coprime to 24ln. To prove the trivial case of
k = 0, take s = 1. The proof for the other cases is more complicated. Our goal is to
prove that for s coprime to 24ln,−24−1(s2−1) covers the values 1l,2l, . . . ,(ln−1−1)l.
The first step in this process is to eliminate the −24−1 coefficient. Multiply the con-

gruence by −24. We obtain s2−1≡−24kl (mod ln). Since −24kl is still a multiple of
l, the question is now reduced to whether or not we can find s coprime to 24ln such
that s2−1≡ kl (mod ln) for all k and n.
There are two differentmethods of proving that this congruence is solvable. First, we

use a constructive method. Take the congruence s2−1 ≡ kl (mod l), or equivalently,
s2−1−kl≡ 0 (mod l). The solutions s to this congruence are of the formml±1.
If we inputml+1 into the congruence (mod l2) we find another solution.

(ml+1)2−1−kl≡ 0 (mod l2),
m2l2+2ml+1−1−kl≡ 0 (mod l2),

(2m−k)l≡ 0 (mod l2).
(2.1)

We can pickm so thatml+1 is coprime to 24t. In fact, it is easy to see that

m≡ k
2
(mod l). (2.2)

If we input (ml2+(kl/2)+1)= s into the congruence

s2−1−kl≡ 0 (mod l3), (2.3)

we obtain
(
ml2+ kl

2
+1

)2
−1−kl≡

(
2m+ k

2

4

)
l2 ≡ 0 (mod l3). (2.4)

Therefore, by lettingm= (−k2/8) (mod l) we obtain a solution to the congruence.
This process can be repeated, and therefore tells us that the congruence is always

solvable for each n.

Remark 2.3. In an alternate proof, we can use Hensel’s lemma to reduce the ques-
tion of this congruence’s solvability to the solvability of s2 − 1− kl ≡ 0 mod l. By
taking s = ±1, this congruence can be solved in all cases. Note also that for s = ±1,
gcd(s,24ln)= 1. The derivative of s2−1−kl is equal to 2s, which is not congruent to
0 (mod l).

Suppose there is a solution to s2−1−kl≡ 0 (mod ln). As before, since f ′ = 2s which
is not congruent to 0 (mod l), Hensel’s lemma tells us that there is a set of s that are
solutions to the congruence (mod ln+1). By induction, this gives us another proof of
Theorem 1.5.
A similar method can be used to prove Theorem 1.6.
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Proof of Theorem 1.6. In Theorem 2.2, let r ,n = 0. Since gcd(−1, t) = 1 and
p(0)= 1 is not congruent to 0 (mod l) we know that there are infinitely many M ≡
s2(r−24−1) +24−1 (modt) such thatM is not congruent to 0 (mod l). From the proof
of Theorem 1.5, we know that if we let t = ln, s2(r−24−1)+24−1 covers the values kl
where 0≤ k≤ ln−1−1, so the theorem is proved.
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