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ABSTRACT. For a complete measure space (X,3,u), we give conditions which force
LP(X,u), for 1 < p < o, to be isometrically isomorphic to £? (I') for some index set I
which depends only on (X, u). Also, we give some new characterizations which yield the
inclusion LP (X,u) c L4(X,u) for 0 < p < q.
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1. Introduction. Suppose X is a nonempty set, 3 is o-algebra of subsets of X, u a
positive measure on 3. For each positive number p, let L7 (X, ) denote the space of all
real valued 3-measurable functions f on X such that [, | f|? du < o, and L® (X, )
denote the space of all essentially bounded, real valued X-measurable functions on
X.In [2, 3, 5] some characterizations of the positive measure p on (X,>) for which
L?(X,u) € L9(X,u),0 < p < g, are given. The purpose of this note is to give some new
characterizations of such measure y which yield the inclusion L? (X, u) € L9(X, u) for
0 < p < q. Our proofs are more transparent, direct, and work even if the measure u
is not o-finite. Further we show that in a situation when L? (X, u) < L4(X, u) for some
pair p,q with 0 < p < g, then L? (X, u), for 1 < p < o0, is isometrically isomorphic to
L7 (T) for some index set I which depends only on the measure space (X,3, u).

2. Preliminaries. Throughout the following (X,3, u) is a positive measure space.
We assume that the measure u is complete. For the sake of simplicity, we write L? (u)
for LP (X, u) and L* (u) for L®(X,u). A set A € X is called an atom if u(A) > 0 and for
every E C A with E € 3, either u(E) = 0 or u(E) = u(A). A measurable subset E with
U(E) > 01is nonatomic if it does not contain any atom. We say that two atoms A; and A»
are distinct if u(A; N A») = 0. We say that two atoms A; and A, are indistinguishable
if u(A1NAy) = pu(Ay) = u(Az). A measurable space (X,3,u) is said to be atomic if
every measurable set of positive measure contains an atom. For more information on
measurable spaces and related topics we refer to [1, 2, 4]. We collect some interesting
and useful properties of atomic and nonatomic sets in the following proposition.

PROPOSITION 2.1. Let (X,X,u) be a complete measure space.

(a) If {A,} is a sequence of distinct atoms, then there exists a sequence {B,,} of disjoint
atoms such that for each n, B, € A, and U;,_; Ay, = U;,_ By.

(b) If {A,} is a sequence of distinct atoms, and A is an atom contained in UA,,, then
there exists a unique m such that A is indistinguishable from A,,.
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(c) If A is a nonatomic set of positive measure, then there exists a sequence {E,} of
disjoint measurable subsets of A of positive measure such that u(E,) — 0 asn — oo,
(A Iff € LP(u) and A is an atom in X, then f is constant almost everywhere (a.e.) on A.

PROOF. (a)Let B; = A; and B, = A, \ U}Z] Ay. Obviously B;’s are disjoint and UA,, =
UB;,. Also u(By) = u(An\ Ufz‘ll Ay) is either zero or is equal to u(Ay). If u(B,) =0,
then u(Ay) = u(Apn (u?;llAk)) < Z?;ll U(A, NAg). Since Ag’s are distinct atoms, this
implies p(A;) = 0 which is absurd. Hence u(B;,) = u(Ay).

(b) Suppose A is contained in UA,. From part (a) of the proposition, there exists
a sequence {B,} of disjoint atoms such that B, < A, for each n and UA,, = UB,,.
Obviously

H(A) = > u(ANBy). 2.1
n=1
Clearly u(AnB,) is either zero or u(A) for each n. Hence by (2.1), there exists a unique
m such that y(AnBy) = u(A). Since A and By, are indistinguishable, B, C A, it
follows that A and A, are indistinguishable.

(c) Suppose A is a nonatomic set of positive measure and p(A) = 6. There exists
a measurable subset E; of A such that 0 < u(E;) < 6/2. Since A\E; is nonatomic,
there exists a measurable subset E; of A\E; such that 0 < u(E») < 6/4. Having chosen
Ey,E»,...,En_1, choose a measurable subset E,, of A\(E; UE> U ---UE,_1) such that
U(Ey) < o /2", Obviously E;,’s are disjoint and u(E,) — 0 as n — oo.

(d) Since A is an atom, it is enough to show that if f is integrable then f is constant
a.e. on A. Choose a real number ¢ such that cu(A) = [, f(x)du. Let B={x € A |
f(x)=c}. Weclaim u(B) =0.Obviously B={x € A| f(x) <clu{xeA| f(x)>c}.
First, we show that u({x € A| f(x) > c}) = 0. We can use a similar argument to show
that u({x € A| f(x) > c}) = 0. We note that {x € A| f(x) > c} = U, B; UBy, where
Bi={xeA|c+1/(1+1i) < f(x)<c+(1/i)}and By = {x € A| f(x) = c +1}. Ob-
viously all B;’s are disjoint. Since A is an atom, at most one of the B;’s can have a
positive measure. If By is of positive measure for some k,0 < k < oo, then cu(A) =
Jaf0du(x) = kaf(x)dx > (c+(1/(k+1)))u(A). This is absurd. Therefore, u(B;) =
0 for all i > 0. Hence {x € A | f(x) > c} is of measure zero. This completes the proof.

O

The following lemmas are quite useful in the proof of the main result.

LEMMA 2.2. Let (X,3, u) be a complete measure space.

(a) If {By} is a sequence of measurable sets of positive measure and u(B,) — 0 as
n — oo, then there exists a sequence {Cy, } of disjoint measurable sets of positive measure
such that u(Cy) - 0 asn — oo.

(b) If {E,} is a sequence of disjoint measurable sets of positive measure such that
U(E,) — 0 as n — oo, then for any positive number m > 1 there exists a subsequence
{En;} of {En} and an increasing sequence {k;} of positive integers such that p(Ey;) €
((1/ki)™, (1/k;)™ 1.

PROOF. (a) Without loss of generality, we may assume that u(B,) < 1 for each
n. If for some positive integer k, By is nonatomic, by using an argument similar to
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that of Proposition 2.1(c), we can construct a sequence C, of disjoint measurable
sets of positive measure such that u(C,) — 0 as n — . Suppose that By is atomic
for each positive integer k, let A; be an atom contained in B;. Since u(B,) — 0 as
n — oo, H(A; N By) can be positive only for finitely many k > 1. Let n, be the small-
est positive integer such that p(A; N By,) = 0. Now choose an atom A, contained
in By,. Obviously A is indistinguishable from A;. Also, u(A> N By) can be positive
for at most finitely many k greater than »n;. Let n, be the smallest positive integer
greater than n; such that y(A> N B,,) = 0. Now choose an atom A3 contained in By, .
Clearly Aj is indistinguishable from A; and A,. Continuing in this fashion, we get a
sequence {Ay} of atoms which are indistinguishable and Ay < By, , for each k > 2.
By Proposition 2.1(a), we may choose a sequence {E} of disjoint atoms such that
Ey € Ayg. Clearly, 0 < p(Ey) = u(Ag) < u(By,_,). This completes the proof of part (a).
(b) Let {E,,} be a sequence of measurable sets of positive measure such that pu(E,) —
0 as n — oo. Without loss of generality, we may assume that {u(E,)} is a strictly
decreasing sequence. Let m > 1. Let kg > 2 be a positive integer such that 1/2 <
(k/(k+1))™ 1 for all k = k. Clearly (1/(£+1)™,1/(£+1)™ 1 1n((1/L)™, (1/£)™ 1]
is nonempty for each € > kg. Since u(E,) is decreasing to zero, the set {u(E,) | n > 1}
must have a nonempty intersection with an interval ((1/k)™,(1/k)™1] for some
k = ko. Let k; be the smallest positive integer greater than ko such that {u(E;,) |
n=1}n((1/k1)™,(1/k;)™ 1] # @. Let n1 be the smallest positive integer such that
U(En,) € ((1/k1)™,(1/ky1)™1]. Next choose the smallest integer k, greater than k,
such that {u(E,) | n>mn1}n ((1/k2)™,(1/k2)™ 1] = @. Let n, be the smallest integer
greater than n; such that u(Ey,) € ((1/k2)™, (1/k>)™-1]. Continuing inductively in
this way, we can choose strictly increasing sequences of positive integers {k;} and
{n;} such that p(Ey;) € ((1/ky)™, (1/k;)™1]. This completes the proof of part (b).
O

LEMMA 2.3. If LP(u) < Li(u) for 0 < p < q, then there does not exist a disjoint
sequence {Ey,} of measurable sets of positive measure such that u(Ey) — 0 asn — .

PROOF. Suppose there exists a disjoint sequence {E,} of measurable sets of posi-
tive measure such that u(E,) — 0 as n — oo. Let

m=3-P __34 2.2)

P-4 p—4q

Clearly m > 1. By Lemma 2.2(b), there exists a subsequence {Ey, } of {E,} and a strictly
increasing sequence of positive integers {k;} such that u(Ey;) € ((1/k;)™, (1/k)™ 1.
Define a function f from X into real numbers by f(x) = (1/k;)*/?~4) if x € E,, and
f(x)=0forall x ¢ U2 Ey,. Then

[ 1reorau- iljb_ )Py = lm (%)3vwﬂ)u<5ni>

= < , )2 (2.3)
E < 00,

® 1 3p/(p—a) 1\m-1 00
() (&) -2

i=1 . i=1
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On the other hand,

© © r1\3/(p-a
[ ipeoman=3 | ireoman=3 (i) U (En,)
X i=1"En; =1 ‘N
. (2.4)
® ( 1 )Sq/(n—q)( 1 )m
> — — ) =oco.
i:zl ki ki)~
Thus f € LP (u) but f ¢ L9(u). This completes the proof of the lemma. O

3. Main results. For the sake of clarity, we first start with a definition. For any
nonempty set I', and p > 0, we define €7 (I') to be the set of all extended real val-
ued functions f on I' such that f is nonzero only on a countable subset of I' and
2alfe)]? < 0.

When p > 1, £7(I') becomes a Banach space under the norm defined by || f ll¢» )=
S 4| f(x) |P)/P, Now, we are ready to state the main result.

THEOREM 3.1. Let (X,3,u) be a complete measure space. The following six condi-
tions are equivalent:

(1) LP (u) c L9(u) for some pair of real numbers p and q with0 < p < q.

(2) LP (u) c L™ (u) for some p > 0.

(3) LP (u) c L= (u) for all positive numbers p.

(4) LP(u) Cc L(u) for allp and q with0 < p < q.

(5) There is no sequence {B,} in X such that u(B,) > 0 for each n and u(B,) — 0 as
n — oo,

(6) (X,>, 1) is atomic with inf scry u(A) > 0, where I1 is the set of all atoms in X.

Moreover, these statements imply that: for each positive number p > 1, L? (u) is iso-
merically isomorphic to €7 (T') for some index set T which depends only on (X,3, ).

PROOF. Since the implication (4)=>(1) is obvious, in order to prove the equivalence
of the statements (1) through (6), it is enough to prove the following implications:
(1)=(2), (2)=(3), 3)=(4), (4)=(5), (5)=(6), and (6)=(2).

(1)=(2): suppose that L? c L% for some pair p,q with 0 < p < q. We claim L¥ C L*.
Suppose there is an f in L?” which is not essentially bounded. Then there exists a
strictly increasing sequence {ny} of positive integers such that for each k > 1, the
set Ex =: {x € X | nx < |f(x)| < ng+ 1} is of a positive measure. Obviously Ex’s
are disjoint. Since u(Ek)nz < [ If1Pdu < [ |fIPdy, it follows p(Ex) — 0. This is a
contradiction in view of Lemma 2.2.

(2)=(3): suppose that L?(u) c L®(u) for some p > 0. Let r be any positive real
number. We show L" (u) C L®(u). let f € L"(u). If A= {x :|f(x)| > 1} is of measure
zero, then obviously f € L®(u). Suppose that A is a positive measure. Let g = X f,
where X, is the characteristic function of the set A. Clearly, g € L" (u) and |g| = 1
a.e. Since |g|"/? € LP,|g|"/P € L. Let M = ess sup |g|"/?. Let € > 0. Choose § > 0 such
that (M + §)?/" — MP/" < ¢. Since {x:|g(x)| > MP/" +e} c {x:]1g(x)| > (M+5)P'"},
and p({x:|g(x)|"'? > M+8}) =0, it follows that ess sup |g| < MP/".

(3)=(4): suppose that L¥ c L® forall p > 0.Let g € L?. Write A = {x : |g(x)| > 1}.If
A is a nonatomic set of positive measure, by Proposition 2.1(c), A contains a disjoint
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sequence {E,} of measurable subsets of A of positive measure such that u(E,) — 0
as n — 0. As is noted in the proof of Lemma 2.3, we can construct a function f in
L? which is not in L*. Hence A contains an atom. Since the measure of A is finite, in
view of Proposition 2.1(a), A cannot contain infinitely many atoms. Therefore, A can
be written as a finite disjoint union of atoms. Suppose that A = U' , 8;, where 0;’s are
disjoint atoms. By Proposition 2.1(d), g is constant on each 60;, Let go, be the value of
g on 0;. Then for any q > p,

j |g|qdu:j |g|qdu+J 919 du
X X-A A

n
p 4 .
SJX—ALg' du+z |g91'| p(6;) (3.1)

i-1

n
< JX lgIPdu+> |ge, |u(0;) < oo.
i-1
Hence LP c L% for g > p.

(4)=(5): this follows from Lemmas 2.2(a) and 2.3.

(5)=(6): Proposition 2.1(c) implies that the space (X,3,u) is atomic. Since atoms
are of positive measure, obviously statement (5) implies that inf ycr p1(A) > 0.

(6)=(2): Suppose (X, X, u) is atomic with inf e u(A) > 0. Let p >0 and g € L? (u).
Suppose B = {x|g(x)| > 1}. If u(B) = 0, then clearly g € L*. Suppose u(B) > 0. Ob-
viously u(B) is finite. Since infc u(A) > 0, B cannot contain infinitely many atoms.
Therefore, B can be written as finite disjoint union of atoms. Since g is constant on
each atom, it follows that g € L.

Finally, we show that for p > 1, one of the statements (1) through (6) (and hence all
of them) imply statement (7). Let (X, X, u) be a measure space such that L? (u) < L2 (u)
for some 1 < p < q. Let {0;}icr be the collection of all atoms in X where T is some
index set. Let f € L? (u) be an arbitrary nonzero element of f. By Proposition 2.1(d)
f is constant almost everywhere on any atom. We denote the value of f on an atom 6
lies in the support of f by fy. Since the support of f is o-finite, and by statement (5)
of the theorem any measurable set of finite measure is disjoint union of finitely many
atoms, the support of f can be written as countable union of atoms. Let {0,,(f)} be
the set of all atoms that forms the support of f. We define F: L? (u) — €7 (I') by

fon ((O)'P, if 6, = 6,,(f) for some n,

(3.2)
0, if 0y & {0n(f)}

F(f)ly) = <|
for any nonzero f in L? (u). The function F is well defined since any two functions
that are equal in L? (u) are equal almost everywhere and thus share the same support.
It is straightforward to verify that F is a one-to-one linear operator from L (u) into
£7 (T). Let h € £7(I'). Since h is nonzero only on a countable subset I}, of I, define f
on X as follows:

hy) ifxeb,, yecly,

_ ] (mep)t'r’ 3.3
Fe 0, itx¢ [ o,. 3-3)

yel



492 R. S. JENKINS AND R. V. GARIMELLA

Obviously, f € LP (u) and F(f) = h. Thus F is an isomorphism from L? (i) onto £? (T).
Further for any f € L? (u),

IOy =S | foi ((0) P17 = S| fo, P (0:)

(3.4)
=S| ireardu= [ 1reordu =i,
i Qi X
where the sum runs over i € I' such that 6; is in the support of f.
Therefore F is an isometry. This completes the proof of the theorem. O
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