NEW CHARACTERIZATIONS OF SOME L^p-SPACES

RUSSELL S. JENKINS and RAMESH V. GARIMELLA

(Received 5 October 1998)

ABSTRACT. For a complete measure space (X, Σ, μ) , we give conditions which force $L^p(X, \mu)$, for $1 \le p < \infty$, to be isometrically isomorphic to $\ell^p(\Gamma)$ for some index set Γ which depends only on (X, μ) . Also, we give some new characterizations which yield the inclusion $L^p(X, \mu) \subset L^q(X, \mu)$ for 0 .

Keywords and phrases. Complete measure space, L^p -spaces.

2000 Mathematics Subject Classification. Primary 28A20, 46E30.

1. Introduction. Suppose *X* is a nonempty set, Σ is σ -algebra of subsets of *X*, μ a positive measure on Σ . For each positive number *p*, let $L^p(X,\mu)$ denote the space of all real valued Σ -measurable functions *f* on *X* such that $\int_X |f|^p d\mu < \infty$, and $L^{\infty}(X,\mu)$ denote the space of all essentially bounded, real valued Σ -measurable functions on *X*. In [2, 3, 5] some characterizations of the positive measure μ on (X,Σ) for which $L^p(X,\mu) \subseteq L^q(X,\mu)$, $0 , are given. The purpose of this note is to give some new characterizations of such measure <math>\mu$ which yield the inclusion $L^p(X,\mu) \subseteq L^q(X,\mu)$ for $0 . Our proofs are more transparent, direct, and work even if the measure <math>\mu$ is not σ -finite. Further we show that in a situation when $L^p(X,\mu) \subseteq L^q(X,\mu)$ for some pair p, q with $0 , then <math>L^p(X,\mu)$, for $1 \le p < \infty$, is isometrically isomorphic to $\ell^p(\Gamma)$ for some index set Γ which depends only on the measure space (X, Σ, μ) .

2. Preliminaries. Throughout the following (X, Σ, μ) is a positive measure space. We assume that the measure μ is complete. For the sake of simplicity, we write $L^p(\mu)$ for $L^p(X, \mu)$ and $L^{\infty}(\mu)$ for $L^{\infty}(X, \mu)$. A set $A \in \Sigma$ is called an *atom* if $\mu(A) > 0$ and for every $E \subset A$ with $E \in \Sigma$, either $\mu(E) = 0$ or $\mu(E) = \mu(A)$. A measurable subset E with $\mu(E) > 0$ is *nonatomic* if it does not contain any atom. We say that two atoms A_1 and A_2 are *distinct* if $\mu(A_1 \cap A_2) = 0$. We say that two atoms A_1 and A_2 are *indistinguishable* if $\mu(A_1 \cap A_2) = \mu(A_1) = \mu(A_2)$. A measurable space (X, Σ, μ) is said to be *atomic* if every measurable set of positive measure contains an atom. For more information on measurable spaces and related topics we refer to [1, 2, 4]. We collect some interesting and useful properties of atomic and nonatomic sets in the following proposition.

PROPOSITION 2.1. Let (X, Σ, μ) be a complete measure space.

(a) If $\{A_n\}$ is a sequence of distinct atoms, then there exists a sequence $\{B_n\}$ of disjoint atoms such that for each $n, B_n \subseteq A_n$ and $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$.

(b) If $\{A_n\}$ is a sequence of distinct atoms, and A is an atom contained in $\cup A_n$, then there exists a unique m such that A is indistinguishable from A_m .

(c) If A is a nonatomic set of positive measure, then there exists a sequence $\{E_n\}$ of disjoint measurable subsets of A of positive measure such that $\mu(E_n) \to 0$ as $n \to \infty$.

(d) If $f \in L^{p}(\mu)$ and A is an atom in Σ , then f is constant almost everywhere (a.e.) on A.

PROOF. (a) Let $B_1 = A_1$ and $B_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k$. Obviously B_i 's are disjoint and $\bigcup A_n = \bigcup B_n$. Also $\mu(B_n) = \mu(A_n \setminus \bigcup_{k=1}^{n-1} A_k)$ is either zero or is equal to $\mu(A_n)$. If $\mu(B_n) = 0$, then $\mu(A_n) = \mu(A_n \cap (\bigcup_{k=1}^{n-1} A_k)) \le \sum_{k=1}^{n-1} \mu(A_n \cap A_k)$. Since A_k 's are distinct atoms, this implies $\mu(A_n) = 0$ which is absurd. Hence $\mu(B_n) = \mu(A_n)$.

(b) Suppose *A* is contained in $\cup A_n$. From part (a) of the proposition, there exists a sequence $\{B_n\}$ of disjoint atoms such that $B_n \subseteq A_n$ for each *n* and $\cup A_n = \cup B_n$. Obviously

$$\mu(A) = \sum_{n=1}^{\infty} \mu(A \cap B_n).$$
(2.1)

Clearly $\mu(A \cap B_n)$ is either zero or $\mu(A)$ for each n. Hence by (2.1), there exists a unique m such that $\mu(A \cap B_m) = \mu(A)$. Since A and B_m are indistinguishable, $B_m \subset A_m$, it follows that A and A_m are indistinguishable.

(c) Suppose *A* is a nonatomic set of positive measure and $\mu(A) = \delta$. There exists a measurable subset E_1 of *A* such that $0 < \mu(E_1) < \delta/2$. Since $A \setminus E_1$ is nonatomic, there exists a measurable subset E_2 of $A \setminus E_1$ such that $0 < \mu(E_2) < \delta/4$. Having chosen E_1, E_2, \dots, E_{n-1} , choose a measurable subset E_n of $A \setminus (E_1 \cup E_2 \cup \dots \cup E_{n-1})$ such that $\mu(E_n) < \sigma/2^n$. Obviously E_n 's are disjoint and $\mu(E_n) \to 0$ as $n \to \infty$.

(d) Since *A* is an atom, it is enough to show that if *f* is integrable then *f* is constant a.e. on *A*. Choose a real number *c* such that $c\mu(A) = \int_A f(x)d\mu$. Let $B = \{x \in A \mid f(x) \neq c\}$. We claim $\mu(B) = 0$. Obviously $B = \{x \in A \mid f(x) < c\} \cup \{x \in A \mid f(x) > c\}$. First, we show that $\mu(\{x \in A \mid f(x) > c\}) = 0$. We can use a similar argument to show that $\mu(\{x \in A \mid f(x) > c\}) = 0$. We note that $\{x \in A \mid f(x) > c\} = \bigcup_{i=1}^{\infty} B_i \cup B_0$, where $B_i = \{x \in A \mid c + 1/(1 + i) \leq f(x) < c + (1/i)\}$ and $B_0 = \{x \in A \mid f(x) \geq c + 1\}$. Obviously all B_i 's are disjoint. Since *A* is an atom, at most one of the B_i 's can have a positive measure. If B_k is of positive measure for some $k, 0 \leq k < \infty$, then $c\mu(A) = \int_A f(x)d\mu(x) = \int_{B_k} f(x)dx \geq (c + (1/(k+1)))\mu(A)$. This is absurd. Therefore, $\mu(B_i) = 0$ for all $i \geq 0$. Hence $\{x \in A \mid f(x) > c\}$ is of measure zero. This completes the proof.

The following lemmas are quite useful in the proof of the main result.

LEMMA 2.2. Let (X, Σ, μ) be a complete measure space.

(a) If $\{B_n\}$ is a sequence of measurable sets of positive measure and $\mu(B_n) \to 0$ as $n \to \infty$, then there exists a sequence $\{C_n\}$ of disjoint measurable sets of positive measure such that $\mu(C_n) \to 0$ as $n \to \infty$.

(b) If $\{E_n\}$ is a sequence of disjoint measurable sets of positive measure such that $\mu(E_n) \to 0$ as $n \to \infty$, then for any positive number m > 1 there exists a subsequence $\{E_{n_i}\}$ of $\{E_n\}$ and an increasing sequence $\{k_i\}$ of positive integers such that $\mu(E_{n_i}) \in ((1/k_i)^m, (1/k_i)^{m-1}]$.

PROOF. (a) Without loss of generality, we may assume that $\mu(B_n) < 1$ for each n. If for some positive integer k, B_k is nonatomic, by using an argument similar to

that of Proposition 2.1(c), we can construct a sequence C_n of disjoint measurable sets of positive measure such that $\mu(C_n) \to 0$ as $n \to \infty$. Suppose that B_k is atomic for each positive integer k, let A_1 be an atom contained in B_1 . Since $\mu(B_n) \to 0$ as $n \to \infty$, $\mu(A_1 \cap B_k)$ can be positive only for finitely many k > 1. Let n_1 be the smallest positive integer such that $\mu(A_1 \cap B_{n_1}) = 0$. Now choose an atom A_2 contained in B_{n_1} . Obviously A_2 is indistinguishable from A_1 . Also, $\mu(A_2 \cap B_k)$ can be positive for at most finitely many k greater than n_1 . Let n_2 be the smallest positive integer greater than n_1 such that $\mu(A_2 \cap B_{n_2}) = 0$. Now choose an atom A_3 contained in B_{n_2} . Clearly A_3 is indistinguishable from A_1 and A_2 . Continuing in this fashion, we get a sequence $\{A_k\}$ of atoms which are indistinguishable and $A_k \subseteq B_{n_{k-1}}$ for each $k \ge 2$. By Proposition 2.1(a), we may choose a sequence $\{E_k\}$ of disjoint atoms such that $E_k \subseteq A_k$. Clearly, $0 < \mu(E_k) = \mu(A_k) \le \mu(B_{n_{k-1}})$. This completes the proof of part (a).

(b) Let $\{E_n\}$ be a sequence of measurable sets of positive measure such that $\mu(E_n) \rightarrow 0$ as $n \rightarrow \infty$. Without loss of generality, we may assume that $\{\mu(E_n)\}$ is a strictly decreasing sequence. Let m > 1. Let $k_0 > 2$ be a positive integer such that $1/2 < (k/(k+1))^{m-1}$ for all $k \ge k_0$. Clearly $(1/(\ell+1)^m, 1/(\ell+1)^{m-1}] \cap ((1/\ell)^m, (1/\ell)^{m-1}]$ is nonempty for each $\ell \ge k_0$. Since $\mu(E_n)$ is decreasing to zero, the set $\{\mu(E_n) \mid n \ge 1\}$ must have a nonempty intersection with an interval $((1/k)^m, (1/k)^{m-1}]$ for some $k \ge k_0$. Let k_1 be the smallest positive integer greater than k_0 such that $\{\mu(E_n) \mid n \ge 1\} \cap ((1/k_1)^m, (1/k_1)^{m-1}] \ne \emptyset$. Let n_1 be the smallest positive integer such that $\mu(E_{n_1}) \in ((1/k_1)^m, (1/k_1)^{m-1}]$. Next choose the smallest integer k_2 greater than k_1 such that $\{\mu(E_n) \mid n > n_1\} \cap ((1/k_2)^m, (1/k_2)^{m-1}] \ne \emptyset$. Let n_2 be the smallest integer greater than n_1 such that $\mu(E_{n_2}) \in ((1/k_2)^m, (1/k_2)^{m-1}]$. Continuing inductively in this way, we can choose strictly increasing sequences of positive integers $\{k_i\}$ and $\{n_i\}$ such that $\mu(E_{n_i}) \in ((1/k_i)^m, (1/k_i)^{m-1}]$. This completes the proof of part (b).

LEMMA 2.3. If $L^p(\mu) \subseteq L^q(\mu)$ for $0 , then there does not exist a disjoint sequence <math>\{E_n\}$ of measurable sets of positive measure such that $\mu(E_n) \to 0$ as $n \to \infty$.

PROOF. Suppose there exists a disjoint sequence $\{E_n\}$ of measurable sets of positive measure such that $\mu(E_n) \rightarrow 0$ as $n \rightarrow \infty$. Let

$$m = 3 - \frac{3p}{p-q} = -\frac{3q}{p-q}.$$
 (2.2)

Clearly m > 1. By Lemma 2.2(b), there exists a subsequence $\{E_{n_i}\}$ of $\{E_n\}$ and a strictly increasing sequence of positive integers $\{k_i\}$ such that $\mu(E_{n_i}) \in ((1/k_i)^m, (1/k_i)^{m-1}]$. Define a function f from X into real numbers by $f(x) = (1/k_i)^{3/(p-q)}$ if $x \in E_{n_i}$ and f(x) = 0 for all $x \notin \bigcup_{i=1}^{\infty} E_{n_i}$. Then

$$\int_{X} |f(x)|^{p} d\mu = \sum_{i=1}^{\infty} \int_{E_{n_{i}}} |f(x)|^{p} d\mu = \sum_{i=1}^{\infty} \left(\frac{1}{k_{i}}\right)^{3p/(p-q)} \mu(E_{n_{i}})$$

$$\leq \sum_{i=1}^{\infty} \left(\frac{1}{k_{i}}\right)^{3p/(p-q)} \left(\frac{1}{k_{i}}\right)^{m-1} = \sum_{i=1}^{\infty} \left(\frac{1}{k_{i}}\right)^{2} < \infty.$$
(2.3)

On the other hand,

$$\int_{X} |f(x)|^{q} d\mu = \sum_{i=1}^{\infty} \int_{E_{n_{i}}} |f(x)|^{q} d\mu = \sum_{i=1}^{\infty} \left(\frac{1}{k_{i}}\right)^{3q/(p-q)} \mu(E_{n_{i}})$$

$$\geq \sum_{i=1}^{\infty} \left(\frac{1}{k_{i}}\right)^{3q/(p-q)} \left(\frac{1}{k_{i}}\right)^{m} = \infty.$$
(2.4)

Thus $f \in L^p(\mu)$ but $f \notin L^q(\mu)$. This completes the proof of the lemma.

3. Main results. For the sake of clarity, we first start with a definition. For any nonempty set Γ , and p > 0, we define $\ell^p(\Gamma)$ to be the set of all extended real valued functions f on Γ such that f is nonzero only on a countable subset of Γ and $\sum_{\alpha} |f(\alpha)|^p < \infty$.

When $p \ge 1$, $\ell^p(\Gamma)$ becomes a Banach space under the norm defined by $|| f ||_{\ell^p(\Gamma)} = (\sum_{\alpha} |f(\alpha)|^p)^{1/p}$. Now, we are ready to state the main result.

THEOREM 3.1. Let (X, Σ, μ) be a complete measure space. The following six conditions are equivalent:

(1) $L^{p}(\mu) \subset L^{q}(\mu)$ for some pair of real numbers p and q with 0 .

(2) $L^{p}(\mu) \subset L^{\infty}(\mu)$ for some p > 0.

(3) $L^{p}(\mu) \subset L^{\infty}(\mu)$ for all positive numbers p.

(4) $L^p(\mu) \subset L^q(\mu)$ for all p and q with 0 .

(5) There is no sequence $\{B_n\}$ in Σ such that $\mu(B_n) > 0$ for each n and $\mu(B_n) \to 0$ as $n \to \infty$.

(6) (X, Σ, μ) is atomic with $\inf_{A \in \Pi} \mu(A) > 0$, where Π is the set of all atoms in Σ .

Moreover, these statements imply that: for each positive number $p \ge 1$, $L^p(\mu)$ is isomerically isomorphic to $\ell^p(\Gamma)$ for some index set Γ which depends only on (X, Σ, μ) .

PROOF. Since the implication $(4) \Rightarrow (1)$ is obvious, in order to prove the equivalence of the statements (1) through (6), it is enough to prove the following implications: $(1)\Rightarrow(2), (2)\Rightarrow(3), (3)\Rightarrow(4), (4)\Rightarrow(5), (5)\Rightarrow(6), and (6)\Rightarrow(2).$

(1) \Rightarrow (2): suppose that $L^p \subset L^q$ for some pair p, q with $0 . We claim <math>L^p \subset L^{\infty}$. Suppose there is an f in L^p which is not essentially bounded. Then there exists a strictly increasing sequence $\{n_k\}$ of positive integers such that for each $k \ge 1$, the set $E_k =: \{x \in X \mid n_k \le |f(x)| < n_k + 1\}$ is of a positive measure. Obviously E_k 's are disjoint. Since $\mu(E_k)n_k^p \le \int_X |f|^p d\mu \le \int_X |f|^p d\mu$, it follows $\mu(E_k) \to 0$. This is a contradiction in view of Lemma 2.2.

(2) \Longrightarrow (3): suppose that $L^p(\mu) \subset L^{\infty}(\mu)$ for some p > 0. Let r be any positive real number. We show $L^r(\mu) \subset L^{\infty}(\mu)$. let $f \in L^r(\mu)$. If $A = \{x : |f(x)| > 1\}$ is of measure zero, then obviously $f \in L^{\infty}(\mu)$. Suppose that A is a positive measure. Let $g = X_A f$, where X_A is the characteristic function of the set A. Clearly, $g \in L^r(\mu)$ and $|g| \ge 1$ a.e. Since $|g|^{r/p} \in L^p$, $|g|^{r/p} \in L^{\infty}$. Let $M = \text{ess sup } |g|^{r/p}$. Let $\epsilon > 0$. Choose $\delta > 0$ such that $(M + \delta)^{p/r} - M^{p/r} < \epsilon$. Since $\{x : |g(x)| > M^{p/r} + \epsilon\} \subseteq \{x : |g(x)| > (M + \delta)^{p/r}\}$, and $\mu(\{x : |g(x)|^{r/p} > M + \delta\}) = 0$, it follows that ess sup $|g| \le M^{p/r}$.

(3) \Rightarrow (4): suppose that $L^p \subset L^\infty$ for all p > 0. Let $g \in L^p$. Write $A = \{x : |g(x)| > 1\}$. If *A* is a nonatomic set of positive measure, by Proposition 2.1(c), *A* contains a disjoint

sequence $\{E_n\}$ of measurable subsets of A of positive measure such that $\mu(E_n) \to 0$ as $n \to \infty$. As is noted in the proof of Lemma 2.3, we can construct a function f in L^p which is not in L^∞ . Hence A contains an atom. Since the measure of A is finite, in view of Proposition 2.1(a), A cannot contain infinitely many atoms. Therefore, A can be written as a finite disjoint union of atoms. Suppose that $A = \bigcup_{i=1}^n \theta_i$, where θ_i 's are disjoint atoms. By Proposition 2.1(d), g is constant on each θ_i , Let g_{θ_i} be the value of g on θ_i . Then for any q > p,

$$\int_{X} |g|^{q} du = \int_{X-A} |g|^{q} du + \int_{A} |g|^{q} du$$

$$\leq \int_{X-A} |g|^{p} du + \sum_{i=1}^{n} |g_{\theta_{i}}|^{q} \mu(\theta_{i})$$

$$\leq \int_{X} |g|^{p} du + \sum_{i=1}^{n} |g_{\theta_{i}}|^{q} \mu(\theta_{i}) < \infty.$$
(3.1)

Hence $L^p \subset L^q$ for q > p.

 $(4) \Rightarrow (5)$: this follows from Lemmas 2.2(a) and 2.3.

 $(5) \Rightarrow (6)$: Proposition 2.1(c) implies that the space (X, Σ, μ) is atomic. Since atoms are of positive measure, obviously statement (5) implies that $\inf_{A \in \pi} \mu(A) > 0$.

 $(6) \Longrightarrow (2)$: Suppose (X, Σ, μ) is atomic with $\inf_{A \in \pi} \mu(A) > 0$. Let p > 0 and $g \in L^p(\mu)$. Suppose $B = \{x | g(x)| > 1\}$. If $\mu(B) = 0$, then clearly $g \in L^{\infty}$. Suppose $\mu(B) > 0$. Obviously $\mu(B)$ is finite. Since $\inf_{A \in \pi} \mu(A) > 0$, B cannot contain infinitely many atoms. Therefore, B can be written as finite disjoint union of atoms. Since g is constant on each atom, it follows that $g \in L^{\infty}$.

Finally, we show that for $p \ge 1$, one of the statements (1) through (6) (and hence all of them) imply statement (7). Let (X, Σ, μ) be a measure space such that $L^p(\mu) \subseteq L^q(\mu)$ for some $1 \le p < q$. Let $\{\theta_i\}_{i\in\Gamma}$ be the collection of all atoms in X where Γ is some index set. Let $f \in L^p(\mu)$ be an arbitrary nonzero element of f. By Proposition 2.1(d) f is constant almost everywhere on any atom. We denote the value of f on an atom θ lies in the support of f by f_{θ} . Since the support of f is σ -finite, and by statement (5) of the theorem any measurable set of finite measure is disjoint union of finitely many atoms, the support of f can be written as countable union of atoms. Let $\{\theta_n(f)\}$ be the set of all atoms that forms the support of f. We define $F : L^p(\mu) \to \ell^p(\Gamma)$ by

$$F(f)(\gamma) = \begin{cases} f_{\theta_n} (\mu(\theta_n))^{1/p}, & \text{if } \theta_{\gamma} = \theta_n(f) \text{ for some } n, \\ 0, & \text{if } \theta_{\gamma} \notin \{\theta_n(f)\} \end{cases}$$
(3.2)

for any nonzero f in $L^{p}(\mu)$. The function F is well defined since any two functions that are equal in $L^{p}(\mu)$ are equal almost everywhere and thus share the same support. It is straightforward to verify that F is a one-to-one linear operator from $L^{p}(\mu)$ into $\ell^{p}(\Gamma)$. Let $h \in \ell^{p}(\Gamma)$. Since h is nonzero only on a countable subset Γ_{h} of Γ , define fon X as follows:

$$f(x) = \begin{cases} \frac{h(y)}{(\mu(\theta_{y}))^{1/p}}, & \text{if } x \in \theta_{y}, \ y \in \Gamma_{h}, \\ 0, & \text{if } x \notin \bigcup_{y \in \Gamma_{h}} \theta_{y}. \end{cases}$$
(3.3)

Obviously, $f \in L^{p}(\mu)$ and F(f) = h. Thus *F* is an isomorphism from $L^{p}(\mu)$ onto $\ell^{p}(\Gamma)$. Further for any $f \in L^{p}(\mu)$,

$$\|F(f)\|_{\ell^{p}(\Gamma)}^{p} = \sum_{i} |f_{\theta i}(\mu(\theta_{i}))^{(1/p)}|^{p} = \sum_{i} |f_{\theta_{i}}|^{p} \mu(\theta_{i})$$

$$= \sum_{i} \int_{\theta_{i}} |f(x)|^{p} d\mu = \int_{X} |f(x)|^{p} d\mu = \|f\|^{p},$$
(3.4)

where the sum runs over $i \in \Gamma$ such that θ_i is in the support of f.

Therefore *F* is an isometry. This completes the proof of the theorem.

References

- P. R. Halmos, *Measure Theory*, D. Van Nostrand Company, Inc., New York, 1950. MR 11,504d. Zbl 040.16802.
- [2] R. A. Johnson, Atomic and nonatomic measures, Proc. Amer. Math. Soc. 25 (1970), 650–655. MR 43#4989. Zbl 201.06201.
- [3] J. L. Romero, *When is* $L^{p}(\mu)$ *contained in* $L^{q}(\mu)$?, Amer. Math. Monthly **90** (1983), no. 3, 203-206. MR 84d:46033. Zbl 549.46018.
- H. L. Royden, *Real Analysis*, Macmillan Publishing Company, New York, 1988. MR 90g:00004. Zbl 704.26006.
- [5] B. Subramanian, On the inclusion $L^p(\mu) ⊂ L^q(\mu)$, Amer. Math. Monthly 85 (1978), no. 6, 479–481. MR 58#2221. Zbl 388.46021.

JENKINS: AMERICAN GENERAL LIFE AND ACCIDENT INSURANCE COMPANY, 450S AMERICAN GENERAL CENTER, NASHVILLE, TN 37250, USA

E-mail address: russell_jenkins@agla.com

GARIMELLA: DEPARTMENT OF MATHEMATICS, BOX 5054, TENNESSEE TECHNOLOGICAL UNIVERSITY, COOKEVILLE, TN 38505, USA

E-mail address: rgarimella@tntech.edu