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Abstract. An element of a group acting on a graph is called invertor if it transfers an
edge of the graph to its inverse. In this paper, we show that if G is a group acting on a tree
X with inversions such that G does not fix any element of X, then an element g of G is
invertor if and only if g is not in any vertex stabilizer of G and g2 is in an edge stabilizer
of G. Moreover, if H is a finitely generated subgroup of G, then H contains an invertor
element or some conjugate of H contains a cyclically reduced element of length at least
one on which H is not in any vertex stabilizer of G, or H is in a vertex stabilizer of G.
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1. Introduction. Lyndon and Schupp [5, Lemma 6.8, page 212] proved that if G is a
nontrivial free product with amalgamation, then for any finitely generated subgroup
H of G,H is contained in a conjugate of a factor of G or some conjugate ofH contains
a cyclically reduced element of length at least two. Similarly, if G is an HNN group
then, for any finitely generated subgroup H of G, H is contained in a conjugate of
the base or some conjugate of H contains a cyclically reduced element of length at
least two. These results can be easily generalized to the result that finitely generated
subgroups of groups acting on nontrivial trees without inversions are contained in a
vertex stabilizers or some of their conjugates contain cyclically reduced elements of
length at least one. In this paper, we show that the situation of groups acting on trees
with inversions is different in the sense that if G is a group acting on a tree X with
inversions such that G does not fix any element of X and if H is a finitely generated
subgroup of G, then H is contained in a vertex stabilizer of G or a conjugate of H
contains a cyclically reduced element of length at least one or H contains an invertor
element on which H is not in any vertex stabilizer of G. This paper is arranged as
follows. In Section 2, we give preliminary definitions and results needed for the rest of
sections. In Section 3, we discuss some properties of invertor elements. In Section 4,
we discuss finitely generated subgroups of groups acting on trees. In Section 5, we
apply the results of previous sections to new groups called quasi HNN groups that
are generalization of HNN groups.

2. Preliminary definitions and results. By a graph X we understand a pair of dis-
joint sets V(X) called the set of vertices and E(X) called the set of edges with V(X)
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nonempty, equipped with two mappings E(X)→ V(X)×V(X), y → (o(y),t(y)) and,
E(X)→ E(X), y → ȳ satisfying the conditions ¯̄y =y and o(ȳ)= t(y) for ally ∈ E(X).
The case ȳ =y is possible for some y ∈ E(X). For y ∈ E(X), o(y) and t(y) are called
the ends of y and ȳ is called the inverse of y . There are obvious definitions of trees,
morphism of graphs and Aut(X), the set of all automorphisms of the graph X which is
a group under the composition of morphisms. For more details we refer the readers to
Mahmood [6, 7] or Serre [10]. We say that a groupG acts on a graphX if there is a group
homomorphismφ :G→Aut(X). If x ∈X (vertex or edge) and g ∈G, we write g(x) for
(φ(g))(x). Thus, if g ∈G and y ∈ E(X), then g(o(y))= o(g(y)), g(t(y))= t(g(y)),
and g(ȳ) = g(y). The case g(y) = ȳ for some g ∈ G and y ∈ E(X) may occur. That
is, G acts with inversions on X. We have the following notations related to the action
of the group G on the graph X.
(1) If x ∈ X (vertex or edge), define G(x) to be the set G(x) = {g(x) : g ∈ G}. This

set is called the orbit of X containing x.
(2) If x,y ∈ X define G(x,y) to be the set G(x,y) = {g ∈ G : g(x) = y}, and

G(x,x) = Gx , the stabilizer of x. Thus, G(x,y) ≠ ϕ if and only if x and y are in
the same orbit. If y ∈ E(X) and u ∈ {o(y),t(y)}, then it is clear that Gȳ = Gy and
Gy ≤Gu.
(3) The set of elements of X fixed by G is denoted by XG. That is, XG = {x ∈ X :

Gx = G}.
(4) If X is connected, then a subtree T of X is called a tree of representatives for

the action of G on X if T contains exactly one vertex from each vertex orbit, and the
subgraph Y of X containing a tree of representatives T , say, is called a fundamental
domain for the action of G on X if each edge of Y has at least one end in T , and Y
contains exactly one edge y , say, from each edge orbit such that G(y,ȳ) = ϕ, and
exactly one pair x,x̄ from each edge orbit such that G(x,x̄)≠ϕ. For the existence of
T and Y (see Khanfar and Mahmood [4]).
Henceforth, G will be a group acting on a tree X, T a tree of representatives for the

action of G on X, and Y a fundamental domain for the action of G on X such that
XG =ϕ and T ⊆ Y .

Definition 2.1. For any vertex v of X define v∗ to be the unique vertex of T such
that G(v,v∗)≠ϕ. That is, vand v∗ are in the same vertex orbit. It is clear that if v is
in T , then v∗ = v and in general v∗∗ = v∗. Moreover, if u and v are two vertices of
X such that G(u,v)≠ϕ, then u∗ = v∗.

Definition 2.2. For each edge y of Y define the following.
(1) Define [y] to be an element of G(t(y),t(y)∗). That is, [y]((t(y))∗) = t(y) to

be chosen as follows:
(a) if o(y)∈V(T), then [y]=1 in casey∈E(T), and [y](y)= ȳ ifG(y,ȳ)≠ϕ,
(b) if o(y) 
∈ V(T), then [y] = [ȳ]−1 if G(y,ȳ) = ϕ, otherwise [y] = [ȳ] if

G(y,ȳ)≠ϕ.
(2) Define −y to be the edge −y = [y]−1(y) if o(y)∈ V(T), otherwise −y =y , and

define +y to be the edge +y = [y](−y). It is clear that t(−y) = (t(y))∗, o(+y) =
(o(y))∗, (−y)=+(ȳ), (+y)=−(ȳ), G−y ≤G(t(y))∗ , and G+y ≤G(o(y))∗ . Moreover, if
G(y,ȳ)≠ϕ, or y ∈ E(T), then G−y =G+y =Gy .
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(3) Defineφy to be the mapφy :G−y →G+y given byφy(g)= [y]g[y]−1. It is clear
that φy is an isomorphism.
(4) Define δy to be the element δy = [y][ȳ]. It is clear that δy = 1 if G(y,ȳ) =ϕ.

Otherwise δy = [y]2. Consequently δy ∈Gy, δȳ = δy and φy(δy)= δy .
Proposition 2.3. G is generated by the generators of Gv and by the elements [y],

where v runs over V(T) and y runs over E(Y).

Proof. See Mahmood [6].

Definition 2.4. By a word w of G we mean an expression of the form

w = g0 ·y1 ·g1 ·y2 ·g2 ···yn ·gn, n≥ 0,
yi ∈ E(Y), for i= 1,2, . . . ,n (2.1)

such that
(1) g0 ∈G(o(y1))∗ ;
(2) gi ∈G(t(yi))∗ , for i= 1,2, . . . ,n;
(3) (t(yi))∗ = (o(yi+1))∗, for i= 1,2, . . . ,n−1.

We define o(w)= (o(y1))∗ and t(w)= (t(yn))∗.
If o(w)= t(w), then w is called a closed word of G of type v , v = o(w).
We have the following definitions related to the word w defined above:
(i) n is called the length of w and is denoted by |w| =n.
(ii) w is called a trivial word of G if |w| = 0, or w = g0.
(iii) The value of w denoted [w] is defined to be the element

[w]= g0[y1]g1[y2]g2 ···[yn]gn of G. (2.2)

(iv) The inverse of w denoted w−1 is defined to be the word

w−1 = g−1n ·ȳn ·δ−1yng−1n−1 ···g−12 ·ȳ2 ·δ−1y2g−11 ·ȳ1 ·δ−1y1g−10 of G. (2.3)

It is clear that [w−1]= [w]−1 but (w−1)−1≠w ifw contains an edge y (say) such that
G(y,ȳ)≠ϕ. Otherwise (w−1)−1=w.
(v) If w′ = h0 ·x1 ·h1 ·x2 ·h2 · ··· ·xm ·hm is a word of G such that t(w)= o(w′),

then w ·w′ is defined to be the word

w ·w′ = g0 ·y1 ·g1 ·y2 ·g2 · ··· ·yn ·gn h0 ·x1 ·h1 ·x2 ·h2 · ··· ·xm ·hm of G.
(2.4)

It is clear that [w ·w′]= [w][w′], o(w ·w′)= o(w), and t(w ·w′)= t(w′).
(vi) w is called a reduced word of G if w contains no subword of the forms

(1) yi ·gi ·ȳi if gi ∈G−yi for i= 1, . . . ,n,
(2) yi ·gi ·yi if gi ∈Gyi and G(yi,ȳi)≠ϕ for i= 1, . . . ,n.

We take trivial words to be reduced.

Definition 2.5. By the edge reduction on the word

w = g0 ·y1 ·g1 ·y2 ·g2 · ··· ·yn ·gn (2.5)

we mean the performance of the following operations on w:
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(1) replace a subword of the form yi ·gi ·ȳi, if gi ∈G−yi , by φyi(giδyi),
(2) replace a subword of the form yi ·gi ·yi, if gi ∈ Gyi and G(yi,ȳi) ≠ ϕ, by

φyi(giδyi).

We define w0 to be the identity element 1 of G.

Theorem 2.6. Every element of G is the value of a closed and reduced word of G.
Moreover, if w a closed word of G of value 1, the identity element of G, then w is not
reduced.

Proof. See Mahmood [7].

Now we generalize Theorem 2.6 as follows.

Lemma 2.7. For every element g of G and any two vertices u and v of T there exists
a reduced word w of G such that o(w) = u, t(w) = v , and [w] = g. Moreover, if w
is reduced, then for any word w′ of G such that o(w) = o(w′), t(w) = t(w′), and
[w]= [w′]= g, we have |w| = |w′| if and only if w′ is a reduced.

Proof. Since G is generated by the generators of Gz and by the elements [y],
where z runs over the vertices of T and y over the edges of Y , therefore g can be writ-
ten as the product g = g0[y1]g1[y2]g2 ···[yn]gn, where gi ∈ Gui for some vertices
u0,u1, . . . ,un of T , and edges y1,y2, . . . ,yn of Y . By taking the reduced paths in T be-
tweenu andui, betweenui and (o(yi))∗, and between (t(yi))∗ andv , and the identity
element 1 of G we may choose this product so that w = g0 ·y1 ·g1 ·y2 ·g2 ···yn ·gn
is a word of G such that o(w) = u, t(w) = v , and [w] = g. If w is not reduced then
for some i, 1 ≤ i ≤ n−1 we have yi+1 = ȳi and gi ∈ G−yi or yi+1 = yi, gi ∈ Gyi , and
G(yi,ȳi) ≠ϕ. If yi+1 = ȳi and gi ∈ G−yi , then we replace yi ·gi · ȳi by the element
φyi(giδyi) inw. We get a new word g0 ·y1 ·g1 ·y2 ·g2 ···yi−1 ·gi−1φyi(giδyi)·yi+1 ·
··· ·yn ·gn.
If yi+1 =yi, gi ∈Gyi, and G(yi,ȳi)≠ϕ, then we replace yi ·gi ·yi+1 by the element

φyi(giδyi) in w. We get a new word as above.
Continuing the above processes on w yields a reduced word of G satisfying the

required properties. In other words, the performance of the edge reductions on w
yields a reduced word of G of value [w].
Now let w = g0 ·y1 ·g1 ·y2 ·g2 · ··· ·yn ·gn, n≥ 0 and

w′ = h0 ·x1 ·h1 ·x2 ·h2 · ··· ·xm ·hm

be two words of G such that w is reduced o(w) = o(w′), t(w) = t(w′) and [w] =
[w′]= g. Assume thatw′ is reduced. We need to show that n=m. Since [w′][w]−1 =
1, the identity of G, therefore by Theorem 2.6, the word

w0=h0·x1·h1·x2·h2· ··· ·xm·hmg−1n ·ȳn·δ−1yng−1n−1· ··· ·g−12 ·ȳ2·δ−1y2g−11 ·ȳ1·δ−1y1g−10
(2.6)

is not reduced. Since w and w′ are reduced, therefore yn = xm and hmg−1n ∈ G−yn ,
or yn = x̄m and hmg−1n ∈ Gyn if G(yn,ȳn) ≠ ϕ. In both cases, we substitute
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xm ·hmg−1n ·ȳn or (xm ·hmg−1n ·yn) by φyn(hmg−1n δyn) in w0. We get a new word

w1=h0·x1·h1·x2·h2· ··· ·xm−1·hm−1Aδ−1yng−1n−1·ȳn−1···g−12 ·ȳ2·δ−1y2g−11 ·ȳ1·δ−1y1g−10 ,
(2.7)

where A=φyn(hmg−1n δyn). Then w1 is not reduced. Similarly, we have xm−1 = ȳn−1,
and hm−1φyn(hmg−1n δyn)δ−1yng

−1
n−1 ∈Gyn−1 or xm−1 =yn−1 if G(yn−1, ȳn−1)≠ϕ.

Now continuing above processes yields x1 = y1 or x1 = ȳ1 if G(y1, ȳ1) ≠ ϕ. This
implies that |w| = |w′|.
Conversely, assume that w is reduced and |w| = |w′|. We need to show that w′ is

reduced. For, if w′ is not reduced then by applying edge reductions on w′ yields a
reduced word w′′ of G such that o(w′) = o(w′′), t(w′) = t(w′′), [w′] = [w′′] and
|w′′|< |w′|. Contradiction. Hence w′ is reduced. This completes the proof.

Definition 2.8. For each element g of G and each vertex v of V(T) define|g|v to
be the length of a reduced word of G of type v and value g. In view of Theorem 2.6
and Lemma 2.7, this concept is clear. |g|v is called the length of g with respect to v .

Proposition 2.9. Let g be an element of G and v a vertex of V(T) such that |g|v
is even. Then for any vertex u of V(T), |g|u is even.

Proof. Let w1 and w2 be two reduced and closed words of G of types v and u
respectively such that w1 and w2 are of value g and |w1| is even. We need to show
that |w2| is even. Let w0 be the word

w0 = 1·y1 ·1·y2 ·1· ··· ·yn ·1·w1 ·1·ȳn ·1· ··· ·1·ȳ2 ·1·ȳ1 ·1, (2.8)

where y1,y2, . . . ,yn is the reduced path in T joining u and v . It is clear that w0 is a
word of G of type u and of value [w2], and w0 is of even length. By applying edge
reductions onw0 yields a reduced word of G of type u, value [w2] and of even length.
Then Lemma 2.7 implies that |w2| is even. This completes the proof.

Proposition 2.10. If g is an element of Gv for some vertex v of V(X), then |g|u is
even for any vertex u of V(T).

Proof. g = aba−1 where a ∈ G, and b ∈ Gv∗ . Let u be any vertex of V(T) and
w a reduced word of G such that o(w) = u, t(u) = v∗, and [w] = a. Then the word
w0 =w ·b·w−1 is closed of type u, value g, and is of even length. Now applying edge
reductions on w0 yields a reduced word of G of type u, value g, and of even length.
This implies that |g|u is even. This completes the proof.

Definition 2.11. Let w be a closed and reduced word of G. We say that w is a
cyclically reduced word of G if w2 is reduced.
It is clear that every word of length zero is a cyclically reduced.
The proof of the following proposition is clear.

Proposition 2.12. Let w = g0 ·y1 ·g1 ·y2 ·g2 · ··· ·yn ·gn, n> 0 be a closed and
reduced word of G. Then the following are equivalent:
(1) wm is cyclically reduced for every integerm,
(2) every cyclic permutation of w is reduced,
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(3) gn−1 ·yn ·gng0 ·y1 ·g1 is a reduced word of G,
(4) |wm| = |m||w| for every integerm,
(5) |wm|< |wm+1| for every integerm, m≥ 0.

Proposition 2.13. Let w1 and w2 be two closed and reduced words of G such that
w1 and w2 are of the same type and of the same value, and w1 be cyclically reduced.
Then w2 is cyclically reduced. Moreover, if |w1| ≥ 1, then [w1] is not in any vertex
stabilizer of G.

Proof. By Lemma 2.7, |w1| = |w2|. If |w1| = 0, then by definition w2 is cyclically
reduced. Let w1 = g0 ·y1 ·g1 ·y2 ·g2 · ··· ·yn ·gn, n > 0 and

w2 = h0 ·x1 ·h1 ·x2 ·h2 · ··· ·xn ·hn. (2.9)

We need to show that 1 ·xn ·hnh0 ·x1 ·1 is reduced. Since w1 is cyclically reduced,
therefore gng0 
∈ G−yn . By Lemma 2.7, hnh0 
∈ G−yn . So 1 ·xn ·hnh0 ·x1 · 1 is re-
duced. Thereforew2 is cyclically reduced. Now assume that |w1| ≥ 1. If [w1]∈Gv for
v ∈ V(X), then [w1]= aba−1, where a∈G, and b ∈Gv∗ . By Lemma 2.7, there exists
a reduced word w of G such that o(w) = o(w1), t(w) = v∗, and a = [w]. Then the
words w1 and w ·b ·w−1 are of the same type and of the same value. Now applying
edge reductions on w ·b ·w−1 yields a reduced word of G of length zero which con-
tradicts Lemma 2.7, or yields a reduced word w′ of G such that w′ is not cyclically
reduced. This contradicts the first part of the proposition. Hence [w1] is not in any
vertex stabilizer of G. This completes the proof.

Definition 2.14. An element g of G is called cyclically reduced if g is the value
of a cyclically reduced word of G. In view of Proposition 2.13, this concept is well
defined.

In the next section, we show that some elements of G are conjugate to cyclically
reduced elements of G and some not.

3. On invertor elements of groups acting on trees. Throughout this section, G
will be a group acting on a tree X, T a tree of representatives for the action of G on X
and Y a fundamental domain for the action of G on X such that XG =ϕ and T ⊆ Y .
We have the following definition.

Definition 3.1. Let g be an element of G and x be an edge of X. If g(x)= x̄, then
g is called an invertor element of G and x is called inverted edge under g. It is clear
that if x is an inverted edge under g, then x̄ is an inverted edge under g and g2 ∈Gx .
The main result of this section is the following theorem.

Theorem 3.2. Let g be an element of G. Then the following are equivalent:
(i) g is an invertor element of G;
(ii) g is conjugate to an element of the form [y]a, where y is an edge of Y such

that G(y,ȳ)≠ϕ, and a∈Gy ;
(iii) g2 is in an edge stabilizer of G, and g is not in any vertex stabilizer of G;
(iv) g is not conjugate to any cyclically reduced element of G;
(v) |g|v is odd and |g2|v < |g|v for any vertex v of T .
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Proof. (i) �⇒(ii). There exists an edge x of X such that g(x)= x̄. The structure of Y
implies that there exist an edge y of Y and an element f of G such that x = f(y) and
G(y,ȳ) ≠ ϕ. Then g(x) = x̄ implies that gf(y) = f[y](y). Hence g = f[y]af−1,
where a∈Gy .
(ii) �⇒(iii). If g = f[y]af−1, where y is an edge of Y such that G(y,ȳ) ≠ ϕ and

a ∈ Gy , then g2 ∈ Gx , where x is the edge f(y). Now we show that g is not in any
vertex stabilizer of G. For, if g is in a vertex stabilizer of G, then [y]a ∈ Gv , where
v is a vertex of X. Then [y]a = bcb−1, where b ∈ G and c ∈ Gv∗ . Let w be the word
w = 1·y ·a. It is clear that w is a cyclically reduced word of G of type (o(y))∗, value
[y]a, and of length one. By Lemma 2.7, there exists a reduced word w′ such that
o(w′)= (o(y))∗, t(w′)= v∗, and [w′]= b.
Let w0 be the word w0 =w′ ·c ·w′−1. Now applying edge reductions on w0 yields a

reduced word of G of type (o(y))∗, value[w], and of even length. Since w is reduced
of length 1, this contradicts Lemma 2.7. Hence g is not in any vertex stabilizer of G.
(iii) �⇒(iv). Let w be a cyclically reduced word of G of type u, f ∈ G, and v =

f(u) such that g = f[w]f−1. If |w| = 0, then [w] ∈ Gu and g ∈ Gv . This contra-
dicts the assumption that g is not in any vertex stabilizer of G. If |w| ≥ 1, then
w2 is a cyclically reduced word of G of type u, and |w2| ≥ 2. This implies that
g2 = f[w2]f−1. Then [w2] = f−1g2f . Since g2 ∈ Gv , therefore [w2] ∈ Gu. This con-
tradicts Proposition 2.13.
(iv) �⇒(v). Let w be a closed and reduced word of G of type v and value g. Since g

is not conjugate to any cyclically reduced elements of G, therefore w can be written
as w = w0 ·a ·y ·b ·w−1

0 , where w0 is a reduced word of G such that o(w0) = v ,
t(w0) = (o(y))∗, and y is an edge of Y such that G(y,ȳ) ≠ϕ and a,b ∈ Gy . Then
g2 is the value of the word w0 ·c ·w−1

0 , where c = a[y]ba[y]b. Now applying edge
reductions onw yields a reduced word of G of odd length. Similarly, by applying edge
reductions on w0 ·c ·w−1

0 yields a reduced word of G of even length.
This implies that |g|v is odd and |g2|v < |g|v .
(v) �⇒(i). g is the value of the closed and reduced word w =w0 ·y ·w1 of G of type

a vertex v of T , where w0 and w1 are reduced words of G such that |w0| = |w1|, and
y is an edge of Y . Then g2 is the value of w2. Since |g2|v < |g|v , therefore w2 is not
reduced. This implies that [w1] = [w0]−1, and G(y,ȳ) ≠ ϕ. So g = [w0][y][w0]−1.
Let x be the edge x = [w0](y). Then

g(x)= [w0][y][w0]−1
(
[w0](y)

)= [w0]
(
[y](y)

)

= [w0](ȳ), because G(y,ȳ)≠ϕ

= [w0](y)= x̄.
(3.1)

This completes the proof.

Remark 3.3. We note that the condition XG =ϕ is essential. For instance, if XG ≠
ϕ, then there exists a vertex v of X such that G =Gv . Then every invertor element of
G is in Gv . This contradicts Theorem 3.2(iii).

Corollary 3.4. Every noninvertor element ofG is conjugate to a cyclically reduced
element of G.
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Corollary 3.5. Let g be an element of G, v be a vertex of Γ , and n be an integer.
Then

(i) |g2n|v = |g2n+1|v if g ∈Gv ,
(ii) |g2n|v < |g2n+1|v if g is an invertor element of G,
(iii) |g2n|v > |g2n+1|v if g is noninvertor element of G, g ∉Gv .

4. Finitely generated subgroups of groups acting on trees. The main result of
this section is the following theorem.

Theorem 4.1. Let G be a group acting on a tree X, T be a tree of representatives
for the action of G on X and Y be a fundamental domain for the action of G on X such
that XG =ϕ and T ⊆ Y . Let H be a finitely generated subgroup of G. Then H contains
an invertor element or a conjugate ofH contains a cyclically reduced element of length
at least one on which H is not in any vertex stabilizer of G, or H is in a vertex stabilizer
of G. If H is contained in the vertex stabilizers Gu and Gv of the vertices u and v of X,
then Gu = Gv , or H lies in any edge stabilizer Gx , where x is any edge in the reduced
path in X joining u and v .

Proof. If H contains an invertor element of G, then by Theorem 3.2(iii), H is not
in any vertex stabilizer of G. Now assume that H contains no invertor element of G.
Since H is finitely generated, therefore H = 〈h1, . . . ,hn〉. Let w1, . . . ,wn be closed and
reduced words of G of the same type such that [wi] = hi for i = 1, . . . ,n. The proof
is by induction on the sum r of the lengths of the words w1, . . . ,wn. If r = 0, then it
is clear that H is contained in Gv , where v is the type of the words w1, . . . ,wn. Now
assume that finitely generated subgroups of G having generators in which the sum
of the lengths of closed and reduced words of G of the same type and values the
generators of these subgroups is less than r are contained in the vertex stabilizers
of some vertices of X, or have cyclically reduced elements of length at least one. If
one of the words w1, . . . ,wn is cyclically reduced of length at least one we are done.
Assume that this is not the case.
Let h∈ {h1, . . . ,hn} and w ∈ {w1, . . . ,wn} such that [w]= h and

w = g0 ·y1 ·g1 ·····ym ·gm, m≥ 1, (4.1)

h is not cyclically reduced; for, if h is cyclically reduced, then h ∈ H is cyclically re-
duced of length at least one. This contradicts the assumption that H has no cyclically
reduced element of length at least one. If h′ ∈ {h1, . . . ,hn} and w′ ∈ {w1, . . . ,wn}
such that [w′] = h′ and w′ = f0 ·x1 · f1 · ··· ·xs · fs , then hh′ is not cyclically re-
duced. Otherwise hh′ will be cyclically reduced of length at least one. This implies
that [ym]gm = a(g0[y1])−1, where a∈G+ym , and

[xs]fs = (f0[x1])−1 = g0[y1]a−1c, where c = [ym]gmf0[x1]. (4.2)

Let h′i = (g0[y1])−1hig0[y1] for i= 1, . . . ,n. Then
H = (g0[y1])−1Hg0[y1]= 〈h′1, . . . ,h′n〉. (4.3)

Then the elements h′1, . . . ,h′n are values of closed and reduced wordsw
′
1, . . . ,w′

nofG of
type (t(y1))∗ and [wi]= h′i for i= 1, . . . ,n. Then the sum of the lengths of w′

1, . . . ,w′
n
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is less than the sum of the lengths of the words w1, . . . ,wn. Then by hypothesis as-
sumption on r , either H′ is contained in Gz for some z ∈ V(X), or H′ contains a
cyclically reduced element of length at least one. If H′ is contained in Gz, then it is
clear that H is contained in Gv , where v = g0[y1](z). Otherwise H′ is a conjugate of
H and H′ contains a cyclically reduced element of length at least one. Now assume
that H is contained in the vertex stabilizers Gu and Gv of the vertices u and v of X
such that Gu ≠Gv . Then it is clear that u≠ v , and there exists a unique reduced path
x1, . . . ,xn in X joining u and v . Consequently Gu∩Gv ⊆

⋂n
i=1Gxi , and H lies in any

edge stabilizer Gx , where x ∈ {x1, . . . ,xn}.
This completes the proof.

Corollary 4.2. IfH is a finite subgroup of G, thenH contains an invertor element,
or H is in a vertex stabilizer of G.

Proof. If H contains an invertor element, then H is not in any vertex stabilizer of
G. If a conjugate of H contains a cyclically reduced element g of length at least one,
then gn is a cyclically reduced element of length at least one for any integer n. Then
by Proposition 2.13, g is not in any vertex stabilizer of G. Thus g is of infinite order.
Hence H is in a vertex stabilizer of G. This completes the proof.

Corollary 4.3. IfH is a cyclic subgroup of G generated by the element g such that
g is not in any vertex stabilizer of G, and H∩Gx is trivial for any edge of X, then H
is cyclic of order 2 if g is an invertor element, or H is infinite cyclic if g is not invertor
element.

Proof. If g is an invertor element, then by Theorem 3.2(iii), g2 is in an edge sta-
bilizer of G. By assumption g2 = 1, the identity element of G. Hence H is a cyclic of
order 2. If g is not invertor element, then from above g is of infinite order. Hence H
is infinite cyclic. This completes the proof.

5. Applications. This section is an application of Theorems 3.2 and 4.1. Groups
acting on trees can be divided into two parts. The first part is of action fixing some
vertices, and the other not. For groups acting on trees without fixing any vertices
are some of actions without inversions, and the other with inversions. Free groups,
free product of groups, free product of groups with amalgamation subgroup, tree
product of groups, and HNN groups are examples of groups acting on trees without
inversions. A new class of groups called quasi HNN groups are examples of groups
acting on trees with inversions. In fact, free product of groups, free product of groups
with amalgamation subgroup are special cases of tree product of groups, and, free
groups and HNN groups are special cases of quasi HNN groups as we will see below.
We start with tree product of groups. For more details of tree product of groups we
refer the readers to Fisher [1] or Karrass and Solitar [2].

Proposition 5.1. Let G = ∏∗
i∈I(Ai,Ujk = Ukj) be a nontrivial tree product of the

groups Ai, i ∈ I, and H be a finitely generated subgroup of G. Then a conjugate of H
contains a cyclically reduced element of length at least one orH is contained in a conju-
gate of Ai, i∈ I. Moreover, if H is finite, then H is contained in a conjugate of Ai, i∈ I.
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Proof. By Mahmood [8], there exists a tree X on which G acts without inversions
such that any tree of representatives for the action ofG onX equals the corresponding
fundamental domain for the action of G on X, XG =ϕ, and for every vertex v of X,
and every edge x of X, Gu is isomorphic to Ai, i∈ I, and Gx is isomorphic to Uik, for
some i, k∈ I. Moreover, G contains no invertor elements. Therefore by Theorem 4.1,
the proof of Proposition 5.1 follows.

Corollary 5.2. If G is a free product with amalgamation group, then for any
finitely generated subgroup H of G a conjugate of H contains a cyclically reduced ele-
ment of length at least one or H is contained in a conjugate of a factor of G. Moreover
if H is finite, then H is contained in a conjugate of factor of G.

Before we state our next proposition we introduce the concept of quasiHNN groups.
Khanfar and Mahmood [3] extended the class of HNN groups to a new class of groups
called quasi HNN groups defined as follows.
Let G be a group, {Ai : i ∈ I}, {Bi : i ∈ I}, and {Cj : j ∈ J} be families of subgroups

of G. For each i ∈ I, let φi : Ai → Bi be an onto isomorphism, and for each j ∈ J let
αj : Cj → Cj be an outer automorphism of order 2 such that the inner automorphism
α2j is determined by c̄j ∈ Cj fixed by αj . That is, αj ∈Out(Cj) and α2j ∈ Inn(Cj) such
that αj(c̄j)= c̄j and α2j (c)= c̄jcc̄−1j for all c ∈ Cj .
Let G∗ be the group of the presentation

G∗ = (G,ti,tj | relG, tiAit−1i = Bi, tjCjt−1j = Cj, t2j = c̄j , i∈ I, j ∈ J
)

(5.1)

where tiAit−1i = Bi stands for the set of relations tiait−1i =φi(ai) for all ai ∈Ai, and
tjCjt−1j = Cj stands for the set of relations tjcjt−1j =αj(cj) for all cj ∈ Cj . The group
G∗ is called a quasi HNN group of base G and associated pairs (Ai,Bi), and (Cj,Cj),
i∈ I, j ∈ J of subgroups of G. Moreover, G is embedded in G∗. We note that if J =∅,
then G∗ is an HNN group of base G and associated pairs (Ai,Bi), i ∈ I of subgroups
of G.

Proposition 5.3. Let G∗ be the quasi HNN group of base G and associated pairs
(Ai,Bi), and (Cj,Cj), i ∈ I, j ∈ J of subgroups of G defined above. Let H be a finitely
generated subgroup of G∗. Then H contains an element conjugate to an element tj,
j ∈ J orH contains a cyclically reduced element of length at least one orH is contained
in a conjugate of G. Moreover, if H is finite containing no element conjugate to the
element tj, j ∈ J, then H is contained in a conjugate of G.

Proof. By Mahmood and Khanfar [9], there exists a tree X on which G∗ acts with
inversions such that G∗ is transitive on the set V(X), XG∗ =ϕ, and for every vertex v
of X, and every edge x of X, G∗v is isomorphic to G, and G∗x is isomorphic to Ai, i∈ I,
or is isomorphic to Cj, j ∈ J. Moreover, G∗ contains the invertor elements conjugate
to an element tj, j ∈ J. Therefore by Theorem 4.1, the proof of Proposition 5.3 follows.

Corollary 5.4. For any finitely generated subgroup H of an HNN group G∗ of
base G, a conjugate of H contains a cyclically reduced element of length at least one
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or H is contained in a conjugate of G. Moreover if H is finite, then H is contained in a
conjugate of G.

Proof. By taking J =∅, we see that G∗ of Proposition 5.3 above is an HNN group
containing no invertor elements. Therefore the proof of Corollary 5.4 follows from
Proposition 5.3.
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