ELEMENTS IN EXCHANGE RINGS WITH RELATED COMPARABILITY

HUANYIN CHEN

(Received 23 December 1998)

ABSTRACT. We show that if R is an exchange ring, then the following are equivalent: (1) R satisfies related comparability. (2) Given $a,b,d\in R$ with aR+bR=dR, there exists a related unit $w\in R$ such that a+bt=dw. (3) Given $a,b\in R$ with aR=bR, there exists a related unit $w\in R$ such that a=bw. Moreover, we investigate the dual problems for rings which are quasi-injective as right modules.

Keywords and phrases. Exchange ring, related comparability, related unit.

2000 Mathematics Subject Classification. Primary 16E50, 16L99.

Let R be an associative ring with identity. From [6], R is said to satisfy related comparability provided that for any idempotents $e, f \in R$ with e = 1 + ab and f = 1 + ba for some $a, b \in R$, there exists a $u \in B(R)$ such that $ueR \lesssim^{\oplus} ufR$ and $(1 - u)fR \lesssim^{\oplus} (1 - u)eR$. The class of rings satisfying related comparability is quite large. It includes regular rings satisfying general comparability [10], one-sided unit regular rings [8] and partially unit-regular rings, while there still exist rings satisfying related comparability, which belong to none of the above classes (cf., [7, Example 10]).

In [4, 5], we studied related comparability over regular rings. In [6, 7], we investigated related comparability over exchange rings. It is shown that every exchange ring satisfying related comparability is separative [1]. Also, we show that related comparability over exchange rings is a Morita invariant. R is said to be an exchange ring if for every right R-module A and any two decompositions $A = M \oplus N = \bigoplus_{i \in I} A_i$, where $M_R \cong R$ and the index set I is finite, then there exist submodules $A'_i \subseteq A_i$ such that $A = M \oplus (\bigoplus_{i \in I} A'_i)$. Many authors have investigated exchange rings with some kind of comparability properties so as to study problems related partial cancellation properties of modules (see [1, 2, 6, 7, 12, 13]).

In this paper, we investigate related comparability over exchange rings by related units. Recall that $w \in R$ is said to be a related unit of R if there exists some $e \in B(R)$ such that w = eu + (1-e)v for some $u, v \in R$, where eu is right invertible in eR and (1-e)v is left invertible in (1-e)R. $w \in R$ is said to be a semi-related unit of R if $w \in R$ is a related unit modulo J(R). By virtue of semi-related units, we also give some new element-wise properties of rings which are quasi-injective as right modules.

Throughout, all rings are associative with identities. B(R) denotes the set of all central idempotents of R and $r \cdot \operatorname{ann}(b)(l \cdot \operatorname{ann}(b))$ denotes the right (left) annihilator of $b \in R$.

LEMMA 1. Let R be an exchange ring. Then R satisfies related comparability if and only if so does the opposite ring R^{op} of R.

PROOF. Since R is an exchange ring, by virtue of [11, Proposition], so is the opposite ring R^{op} of R. Assume that R satisfies related comparability. Given $a^{\mathrm{op}}, b^{\mathrm{op}} \in R^{\mathrm{op}}$ with $a^{\mathrm{op}}x^{\mathrm{op}} + b^{\mathrm{op}} = 1^{\mathrm{op}}$, then we have xa + b = 1 in R. In view of [6, Theorem 4], there exists a $y \in R$ such that x + by is a related unit of R. Thus, we have some $e \in B(R)$ such that (x + by)e is right invertible in eR and (x + by)(1 - e) is left invertible in (1 - e)R. By [5, Lemma 4], we claim that there are $z_1, z_2 \in R$ such that $(a + z_1b)e$ is left invertible in eR and $(a + z_2b)(1 - e)$ is right invertible in (1 - e)R. Let $z = z_1e + z_2(1 - e)$. Then a + zb is a related unit of R. Consequently, $a^{\mathrm{op}} + b^{\mathrm{op}}z^{\mathrm{op}}$ is a related unit of R^{op} . By [6, Theorem 4], we conclude that R^{op} satisfies related comparability. The converse is clear from $R \cong (R^{\mathrm{op}})^{\mathrm{op}}$.

THEOREM 2. Let R be an exchange ring. Then the following are equivalent:

- (1) R satisfies related comparability.
- (2) Given $a,b,d \in R$ with aR + bR = dR, there exists a related unit $w \in R$ such that a + bt = dw.
 - (3) Given a, b with aR = bR, there exists a related unit $w \in R$ such that a = bw.
- (4) Given $a,b,d \in R$ with Ra + Rb = Rd, there exists a related unit $w \in R$ such that a+tb=wd.
 - (5) Given a, b with Ra = Rb, there exists a related unit $w \in R$ such that a = wb.

PROOF. $(2) \Longrightarrow (1)$. Trivial from [6, Theorem 4].

- $(1)\Longrightarrow(2)$. Given $a,b,d\in R$ with aR+bR=dR. Let $g:dR\to dR/bR$ be the canonical map, $f_1:R\to aR$ given by $r\mapsto ar$ for any $r\in R$, $f_2:R\to bR$ given by $r\mapsto br$ for any $r\in R$, $f_3:R\to dR$ given by $r\mapsto dr$ for any $r\in R$. Since aR+bR=dR, we know that gf_1,gf_3 are epimorphisms. On the other hand, R is a projective R-module. So there is some $\alpha\in \operatorname{End}_R R$ such that $gf_1=gf_3\alpha$. Since gf_1 is a epimorphism, we also have some $\psi\in\operatorname{End}_R R$ such that $gf_3\alpha\psi=gf_3$. From $\alpha\psi+(1-\alpha\psi)=1$, there is a $y\in\operatorname{End}_R R$ such that $\alpha+(1-\alpha\psi)y=w$ is a related unit of $\operatorname{End}_R R$. Therefore, we see that $gf_1=gf_3\alpha=gf_3(\alpha+(1-\alpha\psi)y)=gf_3w$, and then $g(f_1-f_3w)=0$. Thus, we have $\operatorname{Im}(f_1-f_3w)\leq\operatorname{Ker} g=bR$. By the projectivity of right R-module R, there exists some $g\in\operatorname{End}_R R$ such that $gf_1=gf_1(1)+gf_1(1)=gf_1(1)+gf_2(1)$. It is easy to verify that $gf_1=gf_1(1)+gf_2(1)$ is a related unit of $gf_1=gf_1(1)+gf_2(1)$.
- $(1)\Longrightarrow(3)$. Given $a,b\in R$ with aR=bR, there exist $s,t\in R$ such that a=bs and b=at. Thus, b=bst. Since st+(1-st)=1, by virtue of [6, Theorem 4], there exists some $z\in R$ such that s+(1-st)z=w is a related unit of R. Hence a=bs=b(s+(1-st)z)=bw, as desired.
- (3) \Longrightarrow (1). Given any regular $a \in R$. Then there exists some $b \in R$ such that a = aba, so aR = abR. Thus a = abw for some related unit $w \in R$. Since ab + (1 ab) = 1, we see that a + (1 ab)w = (ab + (1 ab))w = w. By [5, Lemma 4], there is some $z \in R$ such that b + z(1 ab) = m is a related unit of R. Hence a = aba = a(b + z(1 ab))a = ama. According to [6, Theorem 2], we claim that R satisfies related comparability.
 - $(1) \Leftrightarrow (4) \Leftrightarrow (5)$. By [11, Proposition], we see that the opposite ring R^{op} of R is

exchange. Using Lemma 1, we see that R satisfies related comparability if and only if so does the opposite ring R^{op} of R. Applying $(1) \iff (2) \iff (3)$. To R^{op} , we easily derive the result.

COROLLARY 3. *Let R be an exchange ring. Then the following are equivalent:*

- (1) R satisfies related comparability.
- (2) Given $a, b \in R$ with $aR + r \cdot ann(b) = R$, there exists some $k \in r \cdot ann(b)$ such that a + k is a related unit.
- (3) Given $a, b \in R$ with $Ra + 1 \cdot \operatorname{ann}(b) = R$, there exists some $k \in 1 \cdot \operatorname{ann}(b)$ such that a + k is a related unit.
- **PROOF.** (1) \Rightarrow (2). Given $a, b \in R$ with $aR + r \cdot \operatorname{ann}(b) = R$, then there exist $x \in R$, $k \in r \cdot \operatorname{ann}(b)$ such that ax + k = 1. Since R satisfies related comparability, by virtue of [6, Theorem 4], we can find a $y \in R$ such that a + ky is a related unit of R. It is easy to check that $ky \in r \cdot \operatorname{ann}(b)$, as required.
- $(2) \Longrightarrow (1)$. Given $a,b \in R$ with aR = bR, there exist $s,t \in R$ such that a = bs and b = at. Obviously, $1 st \in r \cdot \operatorname{ann}(b)$. Since st + (1 st) = 1, we have $sR + r \cdot \operatorname{ann}(b) = R$. Thus we can find some $k \in r \cdot \operatorname{ann}(b)$ such that s + k = w is a related unit of R, and then a = bs = b(s + k) = bw, as asserted.
 - $(1) \Leftrightarrow (3)$. Trivial by the symmetry of related comparability.

Recall that n is in the stable range of R provided that $a_1R + \cdots + a_{n+1}R = R$ with $a_1, \ldots, a_{n+1} \in R$ implies that $(a_1 + a_{n+1}b_1)R + \cdots + (a_n + a_{n+1}b_n)R = R$ for some $b_1, \ldots, b_n \in R$. If no such n exists, we say the stable range of R is ∞ . $x \in R$ is said to be related unit-regular if x = xwx for some related unit $w \in R$. Now, we investigate related comparability by related unit-regularity as follows.

PROPOSITION 4. Let R be an exchange ring with the finite stable range. Then the following are equivalent:

- (1) R satisfies related comparability.
- (2) Given $a, b, d \in R$ with aR+bR = dR, there exist some related unit-regular $w_1, w_2 \in R$ such that $aw_1 + bw_2 = d$.
- (3) Given $a, b, d \in R$ with Ra + Rb = Rd, there exist some related unit-regular $w_1, w_2 \in R$ such that $w_1a + w_2b = d$.

PROOF. (1) \Rightarrow (2). Given aR + bR = dR with $a,b,d \in R$. For right R-module R^2 , the two sets $\{a,b\}$ and $\{0,d\}$ generate the same right R-submodule of R^2 . Thus, we can find $A,B \in M_2(R)$ such that (a,b) = (0,d)A, (0,d) = (a,b)B. Assume that $A = (a_{ij})$, $B = (b_{ij})$, $I_2 - AB = (c_{ij}) \in M_2(R)$. Since $AB + (I_2 - AB) = I_2$, we have $(a_{21},a_{22})(b_{12},b_{22})^T + c_{22} = 1$. Since R is an exchange ring satisfying related comparability, its stable range can only be 1,2 or ∞ by [7], Theorem 3]. So 2 is in the stable range of R. Thus, we have some $(y_1,y_2) \in R^2$ such that $(a_{21},a_{22})+c_{22}(y_1,y_2) \in R^2$ is unimodular. Set $Y = \begin{pmatrix} 0 & 0 \\ y_1 & y_2 \end{pmatrix}$. Then, we claim that the second row of $A + (I_2 - AB)Y = U$ is unimodular. Clearly, (0,d)U = (0,d)A = (a,b). Since $u_{21}R + u_{22}R = R$, we can find orthogonal idempotents $e_1 \in u_{21}R$, $e_2 \in u_{22}R$ such that $e_1 + e_2 = 1$. Assume that $e_1 = u_{21}x_1$, $e_2 = u_{22}x_2$. Let $w_1 = x_1e_1$, $w_2 = x_2e_2$. Then w_1 and w_2 are both regular in R. Moreover, we have $u_{21}w_1 + u_{22}w_2 = 1$. By the related comparability of R, we claim that both w_i are related unit-regular, as asserted.

- $(2)\Longrightarrow(1)$. Given any regular $x\in R$. Then x=xyx for a $y\in R$. So we have xR+(1-xy)R=R, and then $xw_1+(1-xy)w_2=1$ for some related unit-regular $w_1,w_2\in R$. We easily check that $x+(1-xy)w_2s\in R$ is related unit for some $s\in R$. Hence y+t(1-xy)=w, i.e., a related unit of R. Consequently, we show that x=xyx=xwx, as desired.
 - $(1) \Leftrightarrow (3)$. Clear from the symmetry of related comparability.

Recall that a module M is quasi-injective if any homomorphism of a submodule of M into M extends to an endomorphism of M. Now, we investigate rings which are quasi-injective as right modules. These extend the corresponding results in [3].

LEMMA 5. Let R be quasi-injective as a right R-module. Given $a,b \in R$ with aR + bR = R, there exists some $t \in R$ such that a + bt is a semi-related unit.

PROOF. Given $a,b \in R$ with aR + bR = R, then $\bar{a}(R/J(R)) + \bar{b}(R/J(R)) = R/J(R)$. Since R is quasi-injective as a right R-module, by virtue of [9, Theorem 1], R/J(R) is a regular, right self-injective ring. Hence R is an exchange ring satisfying related comparability. According to Theorem 2, we can find a $y \in R$ such that $\bar{a} + \bar{b}\bar{y} = \bar{w}$ is a related unit of R/J(R). Therefore a + by = w + r for some $r \in J(R)$. Clearly, w + r is a semi-related unit of R, as desired.

THEOREM 6. Let R be quasi-injective as a right R-module. Then the following hold: (1) Given $a,b \in R$ with $r \cdot ann(a) = r \cdot ann(b)$, there exists a semi-related unit $w \in R$ such that a = wb.

- (2) Given $a,b \in R$ with $1 \cdot \operatorname{ann}(a) = 1 \cdot \operatorname{ann}(b)$, there exists a semi-related unit $w \in R$ such that a = bw.
- **PROOF.** (1) Given $a,b \in R$ with $r \cdot \operatorname{ann}(a) = r \cdot \operatorname{ann}(b)$. Since R is quasi-injective as a right R-module, by [3, Lemma 3.2], we have Ra = Rb. Assume that a = sb, b = ta for some $s,t \in R$. Then b = tsb. Consequently, there exists some $y \in R$ such that t + (1 ts)y is a semi-related unit of R by Lemma 5. Using [5, Lemma 4], we have some $z \in R$ such that s + z(1 ts) = w is a semi-related unit of R. Therefore, we claim that a = sb = (s + z(1 ts))b = wb, as desired.
- (2) Given $a,b \in R$ with $1 \cdot \operatorname{ann}(a) = 1 \cdot \operatorname{ann}(b)$. Similarly to the consideration above, we have aR = bR. Assume that a = bs, b = at for some $s,t \in R$. Then b = bst. From st + (1 st) = 1, we can find a $y \in R$ such that s + (1 st)y = w is a semi-related unit of R. Therefore a = bs = b(s + (1 st)y) = bw, whence the result.

COROLLARY 7. Let R be quasi-injective as a left R-module. Then the following hold: (1) Given $a,b \in R$ with $r \cdot ann(a) = r \cdot ann(b)$, there exists a semi-related unit $w \in R$ such that a = wb.

(2) Given $a, b \in R$ with $1 \cdot \operatorname{ann}(a) = 1 \cdot \operatorname{ann}(b)$, there exists a semi-related unit $w \in R$ such that a = bw.

PROOF. Applying Theorem 6 to the opposite ring R^{op} of R, we complete the proof.

THEOREM 8. Let R be a ring which is quasi-injective as a right R-module. Then the following hold:

- (1) Given $a, b \in R$ with $r \cdot ann(a) \cap r \cdot ann(b) = 0$, there exists $t \in R$ such that a + tb is a semi-related unit.
- (2) Given $a, b \in R$ with $1 \cdot \operatorname{ann}(a) \cap 1 \cdot \operatorname{ann}(b) = 0$, there exists $t \in R$ such that a + bt is a semi-related unit.
- **PROOF.** (1) Given $a,b \in R$ with $\mathbf{r} \cdot \mathrm{ann}(a) \cap \mathbf{r} \cdot \mathrm{ann}(b) = 0$, by virtue of [3, Proposition 3.4], we know that Ra + Rb = R. Thus, $(R/J(R))\bar{a} + (R/J(R))\bar{b} = R/J(R)$. Since R is a quasi-injective ring, from [9, Theorem 1], R/J(R) is a regular, right self-injective ring. Moreover, we see that R/J(R) satisfies related comparability. In view of Theorem 2, there exists $t \in R$ such that $\bar{a} + \bar{t}\bar{b} = \bar{w}$ with w is a semi-related unit of R. Thus, there is some $k \in J(R)$ such that a + tb = w + k. Clearly, w + k is also a semi-related unit. Thus, we claim that a + tb is a semi-related unit of R.
- (2) Given $a,b \in R$ with $l \cdot \operatorname{ann}(a) \cap l \cdot \operatorname{ann}(b) = 0$, analogously to [3, Proposition 3.4], we claim that aR + bR = R. Thus $\bar{a}(R/J(R)) + \bar{b}(R/J(R)) = R/J(R)$. Similarly to the consideration above, we show that R/J(R) satisfies related comparability. In view of Theorem 2, there exists $t \in R$ such that a + bt = w + k with w is a semi-related unit and $k \in J(R)$. Since w + k is also a semi-related unit, the result follows.

COROLLARY 9. *Let R be a ring which is quasi-injective as a left R-module. Then the following hold:*

- (1) Given $a, b \in R$ with $r \cdot ann(a) \cap r \cdot ann(b) = 0$, there exists $t \in R$ such that a + tb is a semi-related unit.
- (2) Given $a, b \in R$ with $1 \cdot \operatorname{ann}(a) \cap 1 \cdot \operatorname{ann}(b) = 0$, there exists $t \in R$ such that a + bt is a semi-related unit.

PROOF. Applying Theorem 8 to the opposite ring R^{op} of R, we easily obtain the result.

Since every regular, right (left) self-injective ring is a quasi-injective ring with trivial Jacobson. As an immediate consequence of Theorem 6, Corollary 7, Theorem 8, and Corollary 9, we now derive the following.

COROLLARY 10. *Let R be a regular, right (left) self-injective ring. Then the following hold:*

- (1) Given $a, b \in R$ with $r \cdot ann(a) = r \cdot ann(b)$, there exists a related unit $w \in R$ such that a = wb.
- (2) Given $a, b \in R$ with $1 \cdot \operatorname{ann}(a) = 1 \cdot \operatorname{ann}(b)$, there exists a related unit $w \in R$ such that a = bw.
- (3) Given $a,b \in R$ with $r \cdot ann(a) \cap r \cdot ann(b) = 0$, there exists $t \in R$ such that a + tb is a related unit.
- (4) Given $a, b \in R$ with $1 \cdot \operatorname{ann}(a) \cap 1 \cdot \operatorname{ann}(b) = 0$, there exists $t \in R$ such that a + bt is a related unit.

REFERENCES

- [1] P. Ara, K. R. Goodearl, K. C. O'Meara, and E. Pardo, *Separative cancellation for projective modules over exchange rings*, Israel J. Math. **105** (1998), 105–137. MR 99g:16006. Zbl 908.16002.
- [2] V. P. Camillo and H. P. Yu, Stable range one for rings with many idempotents, Trans. Amer. Math. Soc. 347 (1995), no. 8, 3141–3147. MR 95j:16006. Zbl 848.16008.

- [3] M. J. Canfell, Completion of diagrams by automorphisms and Bass' first stable range condition, J. Algebra 176 (1995), no. 2, 480–503. MR 97a:16004. Zbl 839.16007.
- [4] H. Chen, Related comparability over regular rings, Algebra Colloq. 3 (1996), no. 3, 277–282. MR 97j:16015. Zbl 857.16011.
- [5] ______, On related unit-regular elements, Algebra Colloq. 4 (1997), no. 3, 323–328.CMP 1 681 549. Zbl 887.16009.
- [6] ______, Exchange rings, related comparability and power-substitution, Comm. Algebra 26 (1998), no. 10, 3383-3401. MR 99f:16005. Zbl 914.16001.
- [7] _____, Related comparability over exchange rings, Comm. Algebra 27 (1999), no. 9, 4209–4216. CMP 1 705 862.
- [8] G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976), 81–90. MR 52#8183. Zbl 315.16008.
- [9] K. R. Goodearl, Direct sum properties of quasi-injective modules, Bull. Amer. Math. Soc. 82 (1976), no. 1, 108–110. MR 53#5665. Zbl 321.16016.
- [10] ______, von Neumann Regular Rings, Pitman (Advanced Publishing Program), Boston, Mass. London, 1979. MR 80e:16011. Zbl 411.16007.
- [11] W. K. Nicholson, On exchange rings, Comm. Algebra 25 (1997), no. 6, 1917–1918.
 CMP 1 446 139. Zbl 883.16003.
- [12] E. Pardo, Comparability, separativity, and exchange rings, Comm. Algebra 24 (1996), no. 9, 2915–2929. MR 97k:16007. Zbl 859.16001.
- [13] H. P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), no. 1, 105–109. MR 96g:16006. Zbl 837.16009.

CHEN: DEPARTMENT OF MATHEMATICS, HUNAN NORMAL UNIVERSITY, CHANGSHA 410006, CHINA

E-mail address: chyzx1@sparc2.hunnu.edu.cn