MULTIPLIERS ON SOME WEIGHTED L^p-SPACES

S. ÖZTOP

(Received 12 June 1998)

ABSTRACT. Let *G* be a locally compact abelian group with Haar measure dx, and let ω be a symmetric Beurling weight function on *G* (Reiter, 1968). In this paper, using the relations between p_i and q_i , where $1 < p_i$, $q_i < \infty$, $p_i \neq q_i$ (i = 1, 2), we show that the space of multipliers from $L^p_{\omega}(G)$ to the space $S(q'_1, q'_2, \omega^{-1})$, the space of multipliers from $L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$ to $L^q_{\omega}(G)$ and the space of multipliers $L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$ to $S(q'_1, q'_2, \omega^{-1})$.

Keywords and phrases. Convolution, weight function, multiplier, Banach module.

2000 Mathematics Subject Classification. Primary 43A22.

1. Introduction. Let *G* be a locally compact abelian group with Haar measure dx. In this paper, $C_0(G)$ denotes the space of all continuous complex-valued functions on *G* with compact support. Let $y \in G$. Then the translation operator τ_y is defined by

$$\tau_{\gamma}f = f(\gamma). \tag{1.1}$$

For a Beurling weight function on *G* (see Reiter [6]), i.e., a continuous function ω satisfying $\omega(x) \ge 1$ and $\omega(x + y) \le \omega(x)\omega(y)$ for all $x, y \in G$.

We set, for $1 \le p \le \infty$, $L^p_{\omega}(G) = \{f \mid f \omega \in L^p(G)\}$. This is a Banach space under the norm

$$||f||_{p,\omega} = \left(\int_{G} |f(x)\omega(x)|^{p} dx \right)^{1/p}.$$
 (1.2)

 $L^1_{\omega}(G)$ is a Banach algebra with respect to convolution under the norm $\|\cdot\|_{1,\omega}$. It is called Beurling algebra. If (1/p) + (1/p') = 1, then the conjugate space of $L^p_{\omega}(G)$ is $L^{p'}_{\omega^{-1}}(G)$.

Let $1 < p_i < \infty$ (i = 1, 2) and let $S(p_1, p_2, \omega)$ be the set of all complex-valued functions *g* which can be written as

$$g = g_1 + g_2$$
 with $(g_1, g_2) \in L^{p_1}_{\omega}(G) \times L^{p_2}_{\omega}(G)$. (1.3)

We define a norm on $S(p_1, p_2, \omega)$ by

$$\|g\|_{s} = \inf \left(\|g_{1}\|_{p_{1},\omega} + \|g_{2}\|_{p_{2},\omega} \right), \tag{1.4}$$

where the infimum is taken over all such decompositions of g. $S(p_1, p_2, \omega)$ is a Banach space under this norm (see Liu and Wang [4]).

Similarly, if $D(p_1, p_2, \omega)$ denotes the set of all complex-valued functions defined on *G* which are in $L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$, we introduce a norm by

$$\|f\|_{D_p} = \max\left(\|f\|_{p_1,\omega}, \|f\|_{p_2,\omega}\right). \tag{1.5}$$

S. ÖZTOP

Then, $D(p_1, p_2, \omega)$ is also a Banach space with the norm $\|\cdot\|_{D_p}$.

It is not hard to see that $D(p_1, p_2, \omega)$ is a Banach $L^1_{\omega}(G)$ module. It is known that $D(p_1, p_2, \omega)$ and $S(p_1, p_2, \omega)$ are reflexive Banach spaces and the following duality relations hold:

$$D(p_1, p_2, \omega)^* \cong S(p'_1, p'_2, \omega^{-1}),$$

$$D(p'_1, p'_2, \omega^{-1})^* \cong S(p_1, p_2, \omega),$$
(1.6)

where $(1/p_i) + (1/p'_i) = 1$, i = 1, 2 (see Murthy-Unni [5] and Liu and Wang [4]).

Let $f \in L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$ with $1 \le q_1 \le q_2 \le \infty$. Then, $f \in L^q_{\omega}(G)$ for all $q_1 \le q \le q_2$ and

$$\|f\|_{q,\omega} \le \|f\|_{q_1,\omega}^{\alpha} \|f\|_{q_2,\omega}^{1-\alpha},\tag{1.7}$$

where $1/q = (\alpha/q_1) + (1 - \alpha)/q_2$, $0 \le \alpha \le 1$ (see Brezis [1]).

Now, we define the space $K(p,q,q_1,q_2,\omega)$ to be set of all functions *h* which can be written in the form

$$h = \sum_{i=1}^{\infty} f_i^* g_i, \qquad (1.8)$$

where $f_i \in C_c(G) \subset L^p_{\omega}(G)$ and $g \in D(q_1, q_2, \omega)$ with $\sum_{i=1}^{\infty} ||f_i||_{p,\omega} ||g_i||_D < \infty$. We define a norm on $K(p, q, q_1, q_2, \omega)$ by

$$\|h\| = \inf\left(\sum_{i=1}^{\infty} \|f_i\|_{p,\omega} \|g_i\|_{D_q}\right),$$
(1.9)

where the infimum is taken over all such representations of *h*. Then $K(p,q,q_1,q_2,\omega)$ is a Banach space in this norm. Since

$$\|f^*g\|_{r,\omega} \le \|f\|_{p,\omega} \|g\|_{q,\omega} \le \|f\|_{p,\omega} \|g\|_{D_q}$$
(1.10)

for $f \in C_c(G) \subset L^p_{\omega}$, $g \in L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$, where $(1/p) + (1/q) \ge 1$, (1/r) = (1/p) + (1/q) - 1, and condition (1.7) holds, it follows that $K(p,q,q_1,q_2,\omega) \subset L^r_{\omega}(G)$ and that the topology on $K(p,q,q_1,q_2,\omega)$ is not weaker than the topology induced from $L^r_{\omega}(G)$.

We say that *T* is a multiplier from $L_{\omega}^{p}(G)$ to $S(q'_{1},q'_{2},\omega^{-1})$ if *T* is a bounded linear operator on $L_{\omega}^{p}(G)$ which commutes with translation. The space of all multipliers from $L_{\omega}^{p}(G)$ to $S(q'_{1},q'_{2},\omega^{-1})$ is denoted by $M[L_{\omega}^{p}(G),S(q'_{1},q'_{2},\omega^{-1})]$.

2. Multipliers from $L^p_{\omega}(G)$ to $S(q'_1, q'_2, \omega^{-1})$. We have the following.

THEOREM 2.1. Let *G* be a locally compact abelian group and let ω be a symmetric Beurling weight function. If condition (1.7) is satisfied and $(1/p) + (1/q) \ge 1$, (1/p) + (1/q) - 1 = 1/r, then the space of multipliers $M[L_{\omega}^{p}(G), S(q'_{1}, q'_{2}, \omega^{-1})]$ is isometrically isomorphic to the dual $K(p,q,q_{1},q_{2},\omega)^{*}$ of $K(p,q,q_{1},q_{2},\omega)$.

PROOF. For any $T \in M[L^p_{\omega}(G), S(q'_1, q'_2, \omega^{-1})]$, define

$$t(h) = \sum_{i=1}^{\infty} T f_i^* g_i(0)$$
(2.1)

for $h = \sum_{i=1}^{\infty} f_i^* g_i$ in $K(p,q,q_1,q_2,\omega)$. First, we show that t is well defined. To this end, it is sufficient to show that if $h = \sum_{i=1}^{\infty} f_i^* g_i = 0$ in $K(p,q,q_1,q_2,\omega)$ and $\sum_{i=1}^{\infty} ||f_i||_{p,\omega}$ $||g_i||_{D_q} < \infty$, then $\sum_{i=1}^{\infty} T f_i^* g_i(0) = 0$.

It is known that $L^p_{\omega}(G)$ has approximate identities bounded in $L^1_{\omega}(G)$ with compactly supported (see Murthy-Unni [5]). Let $(\phi_{\alpha})_{\alpha \in I}$ be an approximate identity for $L^p_{\omega}(G)$ with $\|\phi_{\alpha}\|_1 = 1$ and $\|\phi_{\alpha}\|_{1,\omega} \le K$ (K > 0). Then, for each $f \in L^p_{\omega}(G)$, we have

$$\lim_{\alpha} \|\phi_{\alpha}^* f - f\|_{p,\omega} = 0.$$
(2.2)

Therefore, using (2.2) and the fact that *T* is a multiplier for all $g \in L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$, we obtain

$$\left| T(\phi_{\alpha}^* f_i)^* g_i(0) - Tf_i^* g_i(0) \right| \le \|T\| \|\phi_{\alpha}^* f_i - f_i\|_{p,\omega} \|g_i\|_{D_q} \to 0,$$
(2.3)

so that

$$\lim_{\alpha} T(\phi_{\alpha}^* f_i)^* g_i(0) = T f_i^* g_i(0).$$
(2.4)

Also, for each $\phi_{\alpha} \in C_{c}(G)$ and $f_{i} \in C_{c}(G)$, we have

$$T(\phi_{\alpha}^* f_i) = T\phi_{\alpha}^* f_i. \tag{2.5}$$

(see Larsen [2]).

Since $u = \sum_{i=1}^{\infty} f_i^* g_i = 0$ and the series $\sum_{i=1}^{\infty} f_i^* g_i$ converges uniformly and using equality (2.5), we get

$$\sum_{i=1}^{\infty} T(\phi_{\alpha}^{*}f_{i})^{*}g_{i}(0) = \sum_{i=1}^{\infty} \int_{G} (T\phi_{\alpha})(-y)(f_{i}^{*}g_{i})(y)dy$$
$$= \int_{G} (T\phi_{\alpha})(-y)\sum_{i=1}^{\infty} (f_{i}^{*}g_{i})(y)dy = 0.$$
(2.6)

We show that $\sum_{i=1}^{\infty} T(\phi_{\alpha}^* f_i)^* g_i(0)$ converges uniformly with respect to α .

$$\left|\sum_{i=1}^{\infty} T(\phi_{\alpha}^{*}f_{i})^{*}g_{i}(0)\right| \leq \sum_{i=1}^{\infty} \|T(\phi_{\alpha}^{*}f_{i})\|_{s}\|g_{i}\|_{D_{q}}$$

$$\leq \|T\|\sum_{i=1}^{\infty} \|\phi_{\alpha}^{*}f_{i}\|_{p,\omega}\|g_{i}\|_{D_{q}}$$

$$= \|T\|\sum_{i=1}^{\infty} \|f_{i}\|_{p,\omega}\|g_{i}\|_{D_{q}} < \infty.$$
(2.7)

The convergence of $\sum_{i=1}^{\infty} T(\phi_{\alpha}^* f_i)^* g_i(0)$ is uniform with respect to α . Hence,

$$\lim_{\alpha} \sum_{i=1}^{\alpha} T(\phi_{\alpha}^* f_i)^* g_i(0) = \sum_{i=1}^{\infty} Tf_i^* g_i(0) = 0$$
(2.8)

using (2.4) and (2.6). Thus, *t* is well defined.

S. ÖZTOP

It is obvious that the mapping $T \rightarrow t$ is linear. Now we show that it is an isometry. In fact,

$$\left| t(u) \right| = \left| \sum_{i=1}^{\infty} Tf_i^* g_i(0) \right| \le \sum_{i=1}^{\infty} \|Tf_i\|_{\mathcal{S}} \|g_i\|_{D_q} \le \|T\| \sum_{i=1}^{\infty} \|f_i\|_{p,\omega} \|g_i\|_{D_q}$$
(2.9)

implies that

$$|t(u)| \le ||T|| ||u||. \tag{2.10}$$

Hence, $||t|| \le ||T||$. On the other hand,

$$\|T\| = \sup\left\{ |Tf^*g(0)| : \|f\|_{p,\omega} \le 1, \|g\|_{D_q} \le 1 \right\}$$

= $\sup\left\{ |t(f^*g)| : \|f\|_{p,\omega} \le 1, \|g\|_{D_q} \le 1 \right\} \le \|t\|.$ (2.11)

Therefore, ||t|| = ||T||.

Finally, we show that the mapping $T \to t$ is onto. Suppose that $t \in K(p,q,q_1,q_2,\omega)^*$ and that $f \in C_c(G) \subset L^p_{\omega}(G)$. Define, for all $g \in L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$,

$$g \to t(f^*g). \tag{2.12}$$

Then,

$$|t(f^*g)| \le ||t|| |||f^*g||| \le ||t|| ||f||_{p,\omega} ||g||_{D_q}$$
(2.13)

implies that this mapping gives a bounded linear functional on $L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$. Hence, there exists a unique element, denoted by Tf, in $S(q'_1, q'_2, \omega^{-1})$ such that

$$Tf^*g(0) = t(f^*g)$$
(2.14)

for all $g \in L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$, and

$$\left|Tf^{*}g(0)\right| \leq \|t\| \|f\|_{p,\omega} \|g\|_{D_{q}}.$$
(2.15)

Therefore,

$$\|Tf\|_{s} \le \|t\| \|f\|_{p,\omega} < \infty.$$
(2.16)

Hence, *T* is a bounded operator from $C_c(G)$ into $S(q'_1, q'_2, \omega^{-1})$. Clearly, *T* is linear. Since $C_c(G)$ is dense $L^p_{\omega}(G)$. It can be extended uniquely as a bounded linear operator on $L^p_{\omega}(G)$. We have to prove that this extended *T* is a multiplier. Let $y \in G$ and $f \in C_c(G) \subset L^p_{\omega}(G)$. If $g \in L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$, then

$$\tau_{\mathcal{Y}}Tf^{*}g(0) = Tf^{*}\tau_{\mathcal{Y}}g(0) = t(f^{*}\tau_{\mathcal{Y}}g) = t(\tau_{\mathcal{Y}}f^{*}g) = T\tau_{\mathcal{Y}}f^{*}g(0)$$
(2.17)

holds for all functions g in $L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$. Hence,

$$\tau_{\mathcal{Y}}Tf = T\tau_{\mathcal{Y}}f.\tag{2.18}$$

Thus, *T* belongs to $M[L^p_{\omega}(G), S(q'_1, q'_2, \omega^{-1})]$ and our assertion is proved.

3. Multipliers from $L^{p_1}_{\omega} \cap L^{p_2}_{\omega}(G)$ to $L^q_{\omega}(G)$. Let $f \in L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$, with $1 < p_1 \le p_2 < \infty$, then $f \in L^p_{\omega}(G)$ for all $p_1 \le p \le p_2$ and

$$\|f\|_{p,\omega} \le \|f\|_{p_1,\omega}^{\alpha} \|f\|_{p_2,\omega}^{1-\alpha},\tag{3.1}$$

where $1/p = (\alpha/p_1) + (1-\alpha)/p_2$, $0 \le \alpha \le 1$.

Now, we define the space $K(p_1, p_2, p, q, \omega)$ to be set of all functions h which can be written in the form

$$h = \sum_{i=1}^{\infty} f_i^* g_i, \tag{3.2}$$

where $f_i \in C_c(G) \subset L^{p_1}_{\omega} \cap L^{p_2}_{\omega}(G)$ and $g_i \in L^{q'}_{\omega^{-1}}(G)$ with $\sum_{i=1}^{\infty} ||f_i||_{D_p} ||g_i||_{q',\omega^{-1}} < \infty$. We define a norm on $K(p_1, p_2, p, q, \omega)$ by

$$\||h|\| = \inf\left(\sum_{i=1}^{\infty} \|f_i\|_{D_p} \|g_i\|_{q',\omega^{-1}}\right),$$
(3.3)

where the infimum is taken over all such representations of *h*. Then $K(p_1, p_2, p, q, \omega)$ is a Banach space in this norm. Since

$$\|f^*g\|_{r,\omega^{-1}} \le \|f\|_{p,\omega} \|g\|_{q',\omega^{-1}} \le \|f\|_{D_p} \|g\|_{q',\omega^{-1}} < \infty$$
(3.4)

for $f \in C_c(G) \subset L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$ and $g \in L^{q'}_{\omega^{-1}}(G)$, where condition (3.1) holds and $1 , it follows that <math>K(p_1, p_2, p, q, \omega) \subset L^{r'}_{\omega^{-1}}(G)$.

THEOREM 3.1. Let *G* be a locally compact abelian group and let ω be a symmetric Beurling weight function under condition (3.1) and 1 , <math>1/r = (1/p) - (1/q), then the space of multipliers $M[L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G), L^{q}_{\omega}(G)]$ is isometrically isomorphic to the dual $K(p_1, p_2, p, q, \omega)^*$ of $K(p_1, p_2, p, q, \omega)$.

PROOF. Using the same method in the proof of Theorem 2.1, we can show our assertion. \Box

4. Multipliers from $L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$ **to the space** $S(q'_1, q'_2, \omega^{-1})$. Suppose that $(1/p_i) + (1/q_i) \ge 1$, $1 < p_i$, $q_i < \infty$ and $(1/p_i) + (1/q_i) - 1 = 1/r_i$ (i = 1, 2). Let $L^{r_1, r_2}_{\omega}(G)$ denote the set of all complex-valued functions defined on *G* which are in $L^{r_1}_{\omega}(G) \cap L^{r_2}_{\omega}(G)$. We introduce a norm by

$$\|f\|_{\omega}^{r_1,r_2} = \max\left(\|f\|_{r_1,\omega},\|f\|_{r_2,\omega}\right). \tag{4.1}$$

Then $L^{r_1,r_2}_{\omega}(G)$ is also a Banach space with norm $\|\cdot\|^{r_1,r_2}_{\omega}$ (see Liu and Wang [3]).

To obtain the space of multipliers from $L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$ to $S(q'_1, q'_2, \omega^{-1})$ as a dual space, we define the space $K(p_1, p_2, q_1, q_2, \omega)$ to be the set of all functions h which can be written in the form

$$h = \sum_{i=1}^{\infty} f_i^* g_i, \tag{4.2}$$

where $f_i \in C_c(G) \subset L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$ and $g_i \in L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$ with $\sum_{i=1}^{\infty} ||f_i||_{D_p} ||g_i||_{D_q} < \infty$

S. ÖZTOP

∞. It is not hard to see that $C_c(G)$ is dense in $L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$. Define a norm $h \to |||h|||$ by

$$\||h|\| = \inf\left(\sum_{i=1}^{\infty} \|f_i\|_{D_p} \|g_i\|_{D_q}\right),$$
(4.3)

where the infimum is taken over all such representations of *h*. It is easy to verify that $||| \cdot |||$ defines a norm on $K(p_1, p_2, q_1, q_2, \omega)$ and that the latter is a Banach space.

Now, let $f \in C_c(G) \subset L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$ and $g \in L^{q_1}_{\omega}(G) \cap L^{q_2}_{\omega}(G)$. It follows that $f^*g \in L^{r_1}_{\omega}(G)$,

$$\|f^*g\|_{r_1,\omega} \le \|f\|_{p_1,\omega} \|g\|_{q_1,\omega} \le \|f\|_{D_p} \|g\|_{D_q}$$
(4.4)

and $f^*g \in L^{r_2}_{\omega}(G)$,

$$\|f^*g\|_{r_2,\omega} \le \|f\|_{p_2,\omega} \|g\|_{q_2,\omega} \le \|f\|_{D_p} \|g\|_{D_q}$$
(4.5)

so that

$$\|f^*g\|_{\omega}^{r_1,r_2} \le \|f\|_{D_p} \|g\|_{D_q}.$$
(4.6)

From this, it is clear that $K(p_1, p_2, q_1, q_2, \omega) \subset L_{\omega}^{r_1, r_2}(G)$ and that the topology on $K(p_1, p_2, q_1, q_2, \omega)$ is not weaker than the topology induced by $L_{\omega}^{r_1, r_2}(G)$.

THEOREM 4.1. Let *G* be a locally compact abelian group and let ω be a symmetric Beurling weight function. If $(1/p_i) + (1/q_i) \ge 1$, $(1/p_i) + (1/q_i) - 1 = (1/r_i)$, i = 1, 2, then the space of multipliers $M[L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G), S(q'_1, q'_2, \omega)]$ is isometrically isomorphic to $K(p_1, p_2, q_1, q_2, \omega)^*$, the dual space of $K(p_1, p_2, q_1, q_2, \omega)$.

PROOF. Use the same method employed in the proof of Theorem 2.1. \Box

ACKNOWLEDGEMENT. I would like to thank C. Finet for support and advice during my stay in Mons-Hainaut University.

References

- H. Brezis, Analyse Fonctionnelle, Collection Mathematiques Appliquees pour la Maitrise, Masson, Paris, 1983, Theorie et applications. MR 85a:46001. Zbl 511.46001.
- R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin, Heidelberg, 1971. MR 55 8695. Zbl 213.13301.
- [3] T. S. Liu and A. V. Rooloji, Sums and Intersections of Normed Linear Spaces, vol. 42, Mathematische Nachrichten, no. 29-42, 1969.
- [4] T. S. Liu and J. K. Wang, Sums and intersections of Lesbesgue spaces, Math. Scand. 23 (1968), 241-251. MR 41#7503. Zbl 187.07401.
- [5] G. N. K. Murthy and K. R. Unni, *Multipliers on weighted spaces*, Functional Analysis and its Applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan) (Berlin), Lecture Notes in Math., vol. 399, Springer-Verlag, 1974, pp. 272–291. MR 53 8788. Zbl 298.46031.
- [6] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, Oxford, 1968. MR 46 5933. Zbl 165.15601.

ÖZTOP: ONDOKUZ MAYIS ÜNIVERSITESI, FEN-EDEBIYAT FAKÜLTESI, MATEMATIK BÖLÜMÜ, 55139-KURUPELIT/SAMSUN, TURKEY

Current address: University of Galatasaray, Faculty of Arts and Sciences, Ortaköy/Istanbul, Turkey

E-mail address: serapoztop@hotmail.com