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Abstract. A procedure is examined which solves systems of linear differential equations
by quadratures. A direct check shows that a necessary condition for the procedure cannot
be true and hence the procedure does not work.
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1. Introduction. A procedure set up in [2] provides the solution by quadratures of
any non-autonomous linear system of ordinary differential equations. The validity of
this procedure would be an outstanding result. With this motivation, we have exam-
ined the technical aspects of the related proofs. As a consequence of our investigation
we have ascertained that the procedure is based on a hypothesis which cannot be true
and hence that the procedure does not work.
In this paper, we review briefly the main steps of the procedure and then show

why it cannot work. It then follows that the possibility of solving by quadratures a
non-autonomous linear system has still to be proved.

2. The auxiliary system. Following the notation of [2], we denote by capital letters
n×n matrices whose entries are continuous functions of the independent variable
x ∈ R and we use a prime to mean the derivative with respect to x. We consider the
matrix form of a linear homogeneous system

Y ′ = FY , (2.1)

where F is a given invertible matrix and Y is the unknown matrix. It is not restric-
tive to assume that the system is homogeneous, in that the general solution of non-
homogeneous systems can be obtained by the variation of constants formula [1], i.e.,
by quadratures, from a fundamental matrix solution of the associated homogeneous
system.
It is easily seen that if F is a lower triangular matrix then n independent columns of

Y are obtained by quadratures. According to [2], if F is not diagonal then an auxiliary
system

X′ = TX−S (2.2)
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can be constructed such that: (i) T is lower triangular and hence X is ultimately de-
termined by quadratures; (ii) any matrix solution to (2.2) is also a solution to (2.1).
Indeed, if T and S are properly defined then FX = TX−S, for any non-vanishing X,
whence it follows that (2.1) holds with Y replaced by X, if X solves (2.2).
The auxiliary system (2.2) is obtained by the following procedure. Consider any

matrices A,T ,C , such that
• T is lower triangular,
• A,(F A−I),(T A−I), are non-singular,

where I denotes the identity matrix. Introduce the matrix P defined by

P = (FA−I)(TA−I)−1, (2.3)

and suppose that the matrix [(I−P)− (F −PT)C] is non-singular. Next define B, U ,
and S through

B = [(I−P)−(F−PT)C]−1(F−PT)A, U =A+CB, S = P−1(I−P)U. (2.4)

The matrices U−AB and TU−B are assumed to be non-singular and this is essential
for the procedure to hold.
Next any non-vanishing matrix X is claimed to be representable as

X =AW +UV, (2.5)

where W and V are given by

AW =X−U(U−AB)−1[X−ATX+AS+AU],
V = (U−AB)−1(X−ATX+AS+AU). (2.6)

On the basis of (2.5), (2.6) it is shown that FX −TX − S = 0 whence X = AW +UV
is a solution to (2.2). This in turn would show that (2.1) can always be solved by
quadratures.

3. Failure of the proof. As a consequence of (2.3) and (2.4) the matrix U−AB van-
ishes identically. To prove that this is so we first observe that, by the definition of P ,

I−P = (F−PT)A. (3.1)

Substitution into the definition of B provides

B = [(F−PT)A−(F−PT)C]−1(F−PT)A= [A−C]−1A. (3.2)

Finally, comparison with (3.2) and the definition of U yields

U−AB =A+(C−A)(A−C)−1A≡ 0. (3.3)

Hence U−AB is not invertible and the proof of (2.2) fails.
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