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Abstract. Let G be a connected graph of order n and X = {x ∈ V : d(x)≥n/2}. Suppose
|X| ≥ 3 and G satisfies the modified Fan’s condition. We show that the vertices of the block
B of G containing X form a cycle. This generalizes a result of Fan. We also give an efficient
algorithm to obtain such a cycle. The complexity of this algorithm is O(n2). In case G is
2-connected, the condition |X| ≥ 3 can be removed and G is hamiltonian.
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1. Introduction. We consider only finite undirected graphs without loops or multi-
ple edges. Our terminology is standard and can be found in [4, 8]. Let G = (V ,E) be a
graph of ordern (= |V |). For each vertexx ∈ V , letN(x)= {v∈V : v is adjacent to x}.
Then d(x)= |N(x)| is the degree (valency) of x inG. Denote by dist(x,y) the distance
between x and y in G (x,y ∈ V).
A graph G is said to satisfy Fan’s condition, if min{max{d(x),d(y)} : dist(x,y) =

2 (x,y ∈ V)} ≥n/2. In [7], it was shown that a 2-connected graph which satisfies Fan’s
condition is hamiltonian. Fan’s theorem is a direct generalization of Dirac’s theorem
[4, page 54, Theorem 4.3] and it opened an entirely new approach to study hamilton-
ian graphs. In [3], Fan’s theorem was strengthened, where the same conditions were
shown to imply the graph is pancyclic, with a few minor exceptions (also see [1]).
Some generalizations of Fan’s theorem can be found in [2, 5, 11, 12]. A similar result
is obtained for bipartite graphs [13].
The purpose of this paper is to generalize Fan’s theorem and give an algorithm to

find a hamiltonian cycle. LetX = {x ∈ V : d(x)≥n/2}. SupposeG is a connected graph
and |X| ≥ 3. We show that X is contained in a cycle C of G. Hence X is contained in a
block B of G (Lemma 2.3). If, in addition, G satisfies the modified Fan’s condition, then
the vertices of B form a cycle (Theorem 2.10). From this proof, we obtain an algorithm
to find such a cycle. The complexity of the algorithm is O(n2). If G is 2-connected,
the condition |X| ≥ 3 can be removed and G is hamiltonian (Corollary 2.12).

2. Existence of long cycles. Let G = (V ,E) be a connected graph of order n and
X = {x ∈ V : d(x)≥n/2}.

Lemma 2.1. If d(u)+d(v)≥n (u,v ∈ V) and u is not adjacent to v , then |N(u)∩
N(v)| ≥ 2. Hence u and v are contained in a 4-cycle and dist(u,v)= 2.
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Proof. Suppose the lemma is not true. Then |N(u)∩N(v)| ≤ 1 and so

n≥ d(u)+d(v)−1+|{u,v}| ≥n−1+2=n−1. (2.1)

This is impossible and so the lemma is true.

The following lemma is probably known. For completeness, we give a proof.

Lemma 2.2. Let P = u1u2 ···uk (k ≥ 3) be a path in G. If d(u1)+d(uk) ≥ n, then
the vertices of P are contained in a cycle C of G.

Proof. If u1 is adjacent to uk, then the lemma is true. Hence we can assume that
u1 is not adjacent to uk. If d(u1)= 1, then d(uk)≤n−2, which is impossible. Hence
d(u1)≥ 2 and d(uk)≥ 2. If there exists a vertex x �∈ P such that x is adjacent to both
u1 and uk, then the lemma is true. Therefore, we can assume that N(u1)∩N(uk)⊂ P .
By Lemma 2.1, |N(u1)∩N(uk)| ≥ 2 and so k≥ 4. Hence there exists some ut ∈N(u1)
(t ≠ 2 or k) such that ut−1 ∈ N(uk); otherwise d(uk) ≤ (n− 1)− d(u1), which is
impossible. Therefore, C =u1u2 ···ut−1ukuk−1 ···ut is the required cycle.

A block of a graph is a subgraph that has no cut vertices and is maximal with respect
to this property (see [4, page 44]).

Lemma 2.3. Suppose |X| ≥ 3. Then the vertices of X are contained in a cycle C of G.
Hence X is contained in a block of G.

Proof. Let u,v,w ∈X. If these three vertices are adjacent to each other, then we
have a triangle uvw. If u is not adjacent to v , then by Lemma 2.1, we have a 4-cycle
containing u and v . Hence we can assume that there is a cycle C in G containing at
least two vertices u,v ∈X. Suppose there exists a vertex w ∈X and w ∉ C . We show
that there exists a cycle C′ containing the vertices X∩C and {w}. First we claim that
there is a path P of length at most 4 passing through w and connecting two vertices
of C that is internally disjoint from C .

Case 1. Assume w is adjacent to u. If w is also adjacent to v , then our claim is
clearly true. Hence we can assume that w is not adjacent to v . Then by Lemma 2.1,
there is a 4-cycle containing v and w. Therefore, there exists a vertex x such that x
is adjacent to v and w. If x ∈ C , then P = xwu; otherwise P = vxwu.

Case 2. Assume that w is not adjacent to u or v . Then by Lemma 2.1, |N(w)∩
N(u)| ≥ 2 and |N(w)∩N(v)| ≥ 2. Hence there exist two vertices x and y such that
x is adjacent to w and u, and y is adjacent to w and v . If both x and y ∉ C , then
P =uxwyv ; otherwise we have a shorter path. This proves our claim.
Let {wi,wj} = P ∩C . If the section of cycle C from wi to wj contains all vertices

of X∩C , then C′ =wi ···wj∪P is the required cycle. Hence we can assume that the
section of C from wi to wj contains a vertex u ∈ X ∩C and the section of C from
wj to wi contains a vertex v ∈ X∩C . Furthermore, we can assume that the section
of C from u to wj on C contains no interior vertex which is in X and the section of
C from v to wi contains no interior vertex which is in X. Since u,v ∈ X, it follows
from Lemma 2.2 that the path P ′ =u···wi ···w ···wj ···v is contained in cycle C′

of G. Since X is finite, we can always obtain a cycle containing all vertices of X. This
completes the proof.
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Figure 2.1.

Remark 2.4. If |X| ≤ 2, Lemma 2.3 is not true. Let G be the graph with V = {v1,v2,
v3,v4,v5,v6} such that v1 is adjacent to v2,v3, and v4; v2 is adjacent to v3; v4 is ad-
jacent to v5 and v6; v5 is adjacent to v6. Then |X| = 2 and there is no cycle containing
X in G.

Remark 2.5. Suppose G is 2-connected. Then every two vertices of G is contained
in a cycle. Hence we can always find a cycle containing all vertices of X by the proof
of Lemma 2.3. Therefore, the condition |X| ≥ 3 in Lemma 2.3 can be removed, if G is
assumed to be 2-connected.

A graph G is said to satisfy themodified Fan’s condition, if for any vertexw ∈ V with
d(w)≥ 3, we havex,y ∈N(w) implies eitherx is adjacent toy ormax{d(x),d(y)} ≥
n/2.

Remark 2.6. Let G be the graph with V = {v1,v2,v3,v3,v4,v5,v6} such that v1
is adjacent to v3,v4,v5,v6; v2 is adjacent to v3,v4,v5,v6; v3 is adjacent to v4. Then
|X| ≥ 3, but G is not hamiltonian and G does not satisfy the modified Fan’s condition.

Remark 2.7. If G satisfies Fan’s condition, then G satisfies the modified Fan’s con-
dition, but not vise versa.

Example 2.8. Let n = 4k (k ≥ 2) and G the graph given in Figure 2.1. Then G
satisfies the modified Fan’s condition, but not the Fan’s condition. It is easy to see
that the diameter of G is equal to k+1. However, the diameter of any graph satisfying
Fan’s condition is less than or equal to 6.

Lemma 2.9. Suppose |X| ≥ 3 and G satisfies the modified Fan’s condition. Let C be a
cycle containing X. If z ∉ C and |N(z)∩C| ≥ 2, then there exists a cycle C′ containing
z and C .

Proof. Write C = w1w2 ···wk (k ≥ 3). Since z ∉ C, d(z) < n/2. Let wi and
wj (i < j) be two vertices of C which are adjacent to z. If z is adjacent to wi+1, then
C′ =wi ···w1 ···wi+1z is the required cycle. Therefore, we can assume that z is not
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adjacent towi+1,wi−1,wj+1, orwj−1. Since d(wi)≥ 3 and z is not adjacent towi+1, we
have d(wi+1) ≥ n/2. Similarly, d(wj+1) ≥ n/2. Let P =wi+1 ···wjzwiwi−1 ···wj+1.
Then by Lemma 2.2, there exists a cycle C′ containing P . This proves Lemma 2.9.

Theorem 2.10. Suppose |X| ≥ 3 and G satisfies the modified Fan’s condition. Let B
be the block of G containing X. Then the vertices of B form a cycle.

Proof. By Lemma 2.3, there exists a cycle C containing the vertices of X. Let A=
V(B)−V(C) and suppose A ≠∅. We show that there is a larger cycle C′ containing
all the vertices of C . Let a=max{d(v) : v ∈A} and write C =w1w2 ···wk (k≥ 3).

Case 1. Suppose a = 2. Hence d(v) = 2 for each v ∈ A. Let z ∈ A. Then by con-
structing a tree rooted at z, we can find a path Q=u1u2 ···ut with u1 =wi, ut =wj

and ul ∈A (1< l < t). If j = i−1 or i+1, then C′ =wj ···wiu2 ···ut−1. Hence we can
assume that wi and wj are nonconsecutive vertices of C . Since d(u2) = 2, u2 is not
adjacent towi+1. Since d(wi)≥ 3 and d(u2) < n/2, it follows that d(wi+1)≥n/2. Sim-
ilarly, d(wj+1) ≥ n/2. Let P =wi+1 ···wjut−1 ···u2wi ···wj+1. Then by Lemma 2.2,
P is contained in a cycle C′ of B.

Case 2. Suppose a≥ 3 and choose z ∈A such that d(z)= a≥ 3. By Lemma 2.9, we
can assume |N(z)∩C| ≤ 1. We show that N(z)∩C ≠∅. Suppose this is not true. Then
d(u) < n/2 for allu∈N(z) and soN(z)∪{z} forms a complete subgraph ofG. Hence
d(u)≥ d(z) and by the maximality of d(z), we have d(u)= d(z) for all u∈N(z). But
G is connected and this is impossible. Hence |N(z)∩C| = 1.
Let {wi} = N(z)∩C . Then the set H = (N(z)−{wi})∪{z} forms a complete sub-

graph of G. Hence d(u) ≥ d(z)−1 for all u ∈H and d(u) = d(z)−1 if and only if u
is adjacent only to vertices of H. Since wi is not a cut vertex of B, there exists some
vertex v ∈H such that v �∈N(wi) and d(v) > d(z)−1. By the maximality of d(z), we
have d(v)= d(z). Then there exists a y �∈H∪{wi} such that y is adjacent to v . Sup-
pose d(y) < n/2. Since d(z) < n/2 and d(v)= d(z)≥ 3, it follows that y is adjacent
to z. Hence y ∈ H, which is impossible. Therefore d(y) ≥ n/2 and so y ∈ C . Write
y =wj . Since d(v)= d(z), v is not adjacent to wj−1 or wj+1. Let Q=wizvwj . Then
by the proof of Case 1, we can find a larger cycle C′ containing all vertices of C .
Since B is finite, we can always obtain a cycle containing all vertices of B. This com-

pletes the proof of the theorem.

Remark 2.11. If |X| ≤ 2, then Theorem 2.10 is not true. See the example given in
Remark 2.4.

By using Remark 2.5 and the proof of Theorem 2.10, we have the following result
which generalizes Fan’s theorem.

Corollary 2.12. Suppose G is 2-connected and satisfies the modified Fan’s condi-
tion, then G is hamiltonian.

3. An algorithm. In this section, let G be represented by an adjacent list (see [6,
page 173] or [10, page 17]) and let P =u1u2 ···uk (k≥ 3) be a path in G.

Algorithm 3.1. (If d(u1)+d(uk)≥n, we find a cycle C containing all the vertices
of P .)
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Step 1. Let f(v) ≠ 0 for each v ∈ N(u1), g(v) ≠ 0 for each v ∈ N(uk) and
h(ui)≠ 0 (i= 1,2, . . . ,k).

Step 2. If g(u1)≠ 0, then u1 ∈N(uk) and stop.
Step 3. If there exists a vertex x ∈ N(u1) such that g(x) ≠ 0 and h(x) = 0, then

x ∈N(u1)∩N(uk) and x �∈ P . Let C ←u1u2 ···ukx and stop.
Step 4. Find t (t ≠ 2 or k) such that f(ut) ≠ 0 and g(ut−1) ≠ 0. Let C ← u1u2 ···

ut−1ukuk−1 ···ut and stop.

The correctness of the algorithm follows from Lemma 2.2 and its complexity is
clearly O(n).

Algorithm 3.2. (Assume |X| ≥ 3. Then the vertices of X is contained in a cycle C
of G.)

Step 1. Find a cycle C containing at least two vertices in X.
Step 2. Let X′ =X−C . If X′ =∅, stop. Otherwise let w ∈X′ and u,v ∈X.
Step 3. Find a path P of length at most 4 passing through w and connecting two

vertices {wi,wj} of C that is internally disjoint from C .
Step 4. Let Q1 ←wi ···wj and Q2 ←wj ···wi. If Q2∩X =∅, let C ←Q1∪P and

go to Step 2. If Q1∩X =∅, let C ←Q2∪P and go to Step 2.
Step 5. Choose u∈Q1 and v ∈Q2 such that the sections u···wj and v ···wi of

C contains no interior vertex in X. Let P ←u···wi ···w ···wj ···v .
Step 6. Apply Algorithm 3.1 to the path P and obtain a cycle C containing all ver-

tices of P . Go to Step 2.

The correctness of the algorithm follows from Lemma 2.3.
We show that Algorithm 3.2 can be implemented in O(n2) time. Pick u, v,w ∈ X

and set f(x)≠ 0 for all x ∈N(u) and g(x)≠ 0 for all x ∈N(v). If f(v)≠ 0, f(w)≠ 0
and g(w) ≠ 0, then let C ← uvw. Otherwise, we can assume v is not adjacent to u,
that is, f(v)= 0. Then by Lemma 2.1, there exist x,y ∈N(u) such that g(x)≠ 0 and
g(y)≠ 0. Let C ←uxvy . Hence Step 1 takes O(n) time.
Let f(z)≠ 0 for all z ∈N(u), g(z)≠ 0 for all z ∈N(v), h(z)≠ 0 for all z ∈N(w),

and H(z) ≠ 0 for all z ∈ C . Suppose first that u is adjacent to w; that is, h(u) ≠ 0.
If h(v) ≠ 0, then let P ← uvw. If h(v) = 0, then by Lemma 2.1, we can find a vertex
x ∈N(w) such thatg(x)≠ 0. IfH(x)≠ 0, then let P ← xwu; otherwise let P ← vxwu.
Now assume that u and v are not adjacent tow, that is, h(u)= 0 and h(v)= 0. Then
there exists two vertices x and y such that x ∈ N(u) and h(x) ≠ 0, y ∈ N(v) and
h(y) ≠ 0. If both H(x) = 0 and H(y) = 0, let P ← uxwyv . Otherwise we have a
shorter path P . Hence Step 3 takes O(n) time.
It is easy to see that Steps 4, 5, and 6 can be implemented in O(n) time. Combine

this with Step 2, we have an O(n2) algorithm.
Let B be the block of G containing X. Then B can be found using the depth-first

search for blocks algorithm by Hopcroft and Tarjan (see [6] or [10]). The complexity
of this algorithm is O(max(n,|E|)). For our graphs, |E| = O(n2). Therefore it takes
O(n2) time to find the block B of G.

Algorithm 3.3. (Assume |X| ≥ 3 and G satisfies the modified Fan’s condition. We
find a cycle containing the vertices of B.)
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Step 1. Find a cycle C containing the vertices of X (use Algorithm 3.2).
Step 2. Let A← V(B)−V(C). If A=∅, stop.
Step 3. Leta←max{d(v) : v ∈A} and z ∈Awithd(z)= a. WriteC =w1w2 ···wk

(k≥ 3). If a≥ 3, go to Step 7.
Step 4 (a= 2). Find a path Q = u1u2 ···ut such that u1 =wi, ut =wj , and ul ∈

A (1< l < t).
Step 5. If j = i−1 or i+1, let C ←wj ···wiu2 ···ut−1 and go to Step 2.
Step 6. Assume ui and uj are nonconsecutive vertices of C . Let P ← wi+1 ···wj

ut−1 ···u2wi ···wj+1. Use Algorithm 3.1 to find a cycle C containing all vertices of P
and go to Step 2.

Step 7 (a≥ 3). If |N(z)∩C| = 1, go to Step 10.
Step 8 (|N(z)∩C| ≥ 2). Letwi andwj be two vertices of C which are adjacent to z.

If z ∈N (wi+1), then let C ←wi ···w1 ···wi+1z and go to Step 2.
Step 9 (assume z is not adjacent to wi+1, wi−1, wj+1 or wj−1). Let P←wi+1 ···wj

zwiwi−1 ···wj+1. Apply Algorithm 3.1 to find a cycle C containing the vertices of P
and go to Step 2.

Step 10. Let {wi} = N(z)∩C and H ← (N(z)−{wi})∪{z}. Find a vertex v ∈ H
such that v �∈N(wi) and d(v)= d(z).

Step 11. Find wj ∈ N(v) and wj �∈ H ∪ {wi}. Let u2 ← z, u3 ← v, t ← 4 and
Q←wiu2u3wj . Go to Step 5.

The correctness of the algorithm follows from Theorem 2.10.
We show that the algorithm can be implemented in O(n2) time. Step 1 uses

Algorithm 3.2 and so it takes O(n2) time. Step 3 can be done in O(n) time. (If we use
F-heaps data structure [9], it takesO(logn) time.) In Step 4, we construct a tree rooted
at z. As soon as we find two vertices wi and wj ∈ C , we stop. Since a= 2, each vertex
of Q has degree 2. Hence Q can be constructed in O(n) time. It is clear that Steps 5,
6, 7, 8, 9, 10, and 11 can be done in O(n) time. Combine this with Step 2, we have an
O(n2) algorithm.
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