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Abstract. The aim of this work is to study a decomposition theorem for rings satisfying
either of the properties xy = xpf(xyx)xq or xy = xpf(yxy)xq , where p = p(x,y),
q = q(x,y) are nonnegative integers and f(t)∈ tZ[t] vary with the pair of elements x,y,
and further investigate the commutativity of such rings. Other related results are obtained
for near-rings.
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1. Introduction. Searcóid and MacHale [10] established the commutativity of rings
in which all products of two elements are potent. Recently, using this result Ligh and
Luh [9] proved that such rings are direct sum of J-rings (i.e., rings satisfying Jacobson’s
xn(x) = x property (see [8])) and zero rings. More recently, Bell and Ligh [5] studied the
direct sum decomposition of rings satisfying the property xy = (xy)2f(x,y), where
f(X,Y)∈ Z〈X,Y 〉, the ring of polynomials in two noncommuting indeterminates. Now,
we consider the following ring properties.
(P) For each x,y in a ring R, there exist integers p = p(x,y) ≥ 0, q = q(x,y) ≥ 0

and a polynomial f(t)∈ tZ[t] such that

xy = xpf(xyx)xq. (1.1)

(P1) For each x,y in a ring R, there exist integers p = p(x,y) ≥ 0, q = q(x,y) ≥ 0
and a polynomial f(t)∈ tZ[t] such that

xy = xpf(yxy)xq. (1.2)

2. A decomposition theorem for rings. In this section, we establish a decompo-
sition theorem which in turn allows us to study the commutativity of such rings.
Throughout this section, R represents an associative ring (may be without unity 1),
and C =N(R), the set of nilpotent elements of R. A ring R is called periodic if for each
x ∈ R, there exist distinct positive integersm=m(x), n=n(x) such that xm = xn.
A ring R is called zero commutative if xy = 0 implies that yx = 0 for all x,y ∈ R. An
element x of R satisfying the property xn(x) = x for some n(x) > 1 is called potent.
Let B be the set of all potent elements. If B = R, then R is a J-ring. By a well-known
theorem of Jacobson [8], J-rings are necessarily commutative. A sufficient condition
for R to be periodic is Chacron’s criterion: for each x ∈ R there exists an integer
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p = p(x) > 1 and a polynomial f(t)∈ Z[t] such that xp = xp+1f(x) (see [6]). Also it
is shown in [2] that if R is periodic, then every element x ∈ R can be written in the
form x = b+c, where b ∈ B and c ∈ C . Further, Bell [4] remarked that if, in a peri-
odic ring R, each element has a unique representation as above, then both B and C are
ideals and R = B⊕C . Motivated by these, we obtain a decomposition theorem for rings
satisfying one of the properties (P) and (P1). In fact, we establish the following result.

Theorem 2.1. Let R be a ring satisfying one of the properties (P) and (P1). Then R
is a direct sum of a J-ring and a nil ring.

Proof of Theorem 2.1. We break the proof into the following parts called steps.

Step 1. Let R be a ring satisfying (P). Then R is periodic.

Proof. Take y = x in (P). This shows that R satisfies Chacron’s criterion for peri-
odicity and hence the ring satisfying (P) is necessarily periodic.

Step 2. Let R be a ring satisfying (P). Then R is zero-commutative.

Proof. Let xy = 0. Then there exist integers p′ = p(y,x) ≥ 0, q′ = q(y,x) ≥ 0
and a polynomial h(t) ∈ tZ[t] such that yx = yp′h(yxy)yq′ = 0. This implies that
R is a zero-commutative.

Step 3. Let R be a ring satisfying (P). Then RC = CR = {0}.
Proof. Let r(x)= 2. Replacing y by x in (P), we get x2 = xrg(x), for some g(t)∈

tZ[t] and, by Step 1, R is periodic; clearly R is nil.
Next we have

x2 = xrg(x) for g(t)∈ Z[t], r(x) > 2. (2.1)

Let c ∈ C and x ∈ R. Then choose integers p1 = p(c,x) ≥ 0, q1 = q(c,x) ≥ 0 and a
polynomial f1(t)∈ tZ[t] such that

cx = cp1f1(cxc)cq1 . (2.2)

From the equality (2.1), one can easily observe that c2 = 0, and hence 0= xc2 = (xc)c.
Step 2 gives that c(xc) = 0, which together with (2.2), yields that cx = 0; and again
Step 2 gives that xc = 0 for all x ∈ R, c ∈ C . This gives the required result, that is,

RC = CR = {0}. (2.3)

By Step 1, R is periodic so that each element x ∈ R can be written in the form b+c,
where b ∈ B, and c ∈ C . By a nice result of Bell [4], it is enough to show that this
representation is unique. If a+c = b+d for some a,b ∈ B and c,d∈ C, then

a−b = d−c. (2.4)

Let a,b ∈ B. Then there exist at least one odd of the positive integers r = r(a) and
s = s(b) such that ar = a and bs = b.
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Let k = (r −1)s− (r −2) = (s−1)r − (s−2) be an odd positive integer. Thus it is
clear that ak = a and bk = b. Also e1 = ak−1, e2 = bk−1 are idempotents in R with
e1a= a and e2b = b.Multiplying (2.4) by a and b from both sides and using the result
of Step 3, we get a2 = ab = ba and b2 = ab = ba. This gives that a2 = b2 and hence
e1 = e2.
If k is even and ak = a, then a2(k−1)+1 = a, where 2(k−1)+1 is odd, so this yields

the required result.
Left-multiplying (2.4) by e1 now yields a= b, and this completes the proof.

Similar arguments can be used if R satisfies the property (P1).

Remark 2.2. By a careful scrutiny of the result of Step 2, one concludes that the
nilpotent elements of R annihilate R on both sides and hence are central. However,
J-rings are commutative, so that Theorem 2.1 at once gives the following corollary
which extends the main results of [10, 12].

Corollary 2.3. Let R be a ring satisfying any one of the properties (P) and (P1).
Then R is commutative.

3. Decomposition theorems for near-rings. In this section, we investigate the struc-
ture of near-rings satisfying properties (P) and (P1). Here, R denotes a left near-ring
and Z = Z(R) the multiplicative center of R. An element x of R is called distributive
if (a+b)x = ax+bx for all a,b ∈ R. If all the elements of R are distributive, then R is
called a distributive near-ring. A near-ring R is called a periodic near-ring if for each
x ∈ R, there exist distinct positive integersm =m(x), n= n(x) such that xm = xn.
A near-ring R is called a zero-symmetric if 0x = 0 for all x ∈ R (left distributivity
yields x0= 0).
An ideal of a near-ring R is a normal subgroup I of (R,+) such that (i) RI ⊆ I and

(ii) (x+α)y−xy ∈ I for all x,y ∈ R and α∈ I (see [11] for details).
It is natural to ask the question: do the analogous hypotheses give the direct sum

decomposition in the case of near-rings?
Example 29, number (2.5) due to Clay [7] guarantees that one cannot get the direct

sum decomposition under the hypotheses of the above theorem, even in the case of
distributive near-rings.
Following [5], we define a weaker notion of orthogonal sum: a near-ring R is an

orthogonal sum of sub-near-rings P and Q, denoted by R = P+̇Q, if PQ =QP = {0}
and each element of R has a unique representation of the form p+q, p ∈ P , q ∈Q.
Now, our aim is to establish the decomposition theorems for near-rings satisfying

any one of the following related properties:
(P2) For each pair of elements x,y ∈ R, there exist integers p = p(x,y) ≥ 0, q =

q(x,y)≥ 0, and r = r(x,y)≥ 1 such that
xy = xp(xyx)rxq. (3.1)

(P3) For each pair of elements x,y ∈ R, there exist integers p = p(x,y) ≥ 0, q =
q(x,y)≥ 0, and r = r(x,y) > 1 such that

xy = xp(yxy)rxq. (3.2)
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Theorem 3.1. Let R be a near-ring satisfying the property (P2). If the idempotents
of R are multiplicatively central, then B is a sub-near-ring with (B,+) abelian and C is
a sub-near-ring with trivial multiplication and R = C+̇B.
Before proving our theorem, we state the following known results.

Lemma 3.2 (see [1]). Let R be a zero-commutative near-ring. Then the set C of nilpo-
tent elements is an ideal if and only if C is a subgroup of the additive group (R,+).

Lemma 3.3 (see [3]). Let R be a periodic near-ring with multiplicative identity. If C ⊆
Z, then (R,+) is abelian.

Lemma 3.4 (see [5]). Let R be a near-ring in which the idempotents are multiplica-
tively central. If e1 and e2 are idempotents, then there exists an idempotent e3 such that
e3e1 = e1 and e3e2 = e2.

Now, we prove the following.

Lemma 3.5. Let R be a near-ring satisfying (P2). Then the set C of nilpotent elements
of R is an ideal.

Proof. Obviously, we see that a near-ring satisfying (P2) is necessarily zero-symmet-
ric as well as zero-commutative. Let c ∈ C and x an arbitrary element of R. Then there
exist integers p = p(x,c)≥ 0, q = q(x,c)≥ 0, and r = r(x,c) > 1 such that

xc = xp(xcx)rxq. (3.3)

Next, choose integers p′ = p(x)≥ 0, q′ = q(x)≥ 0, and r ′ = r(x) > 1 such that

x2 = xp′+q′+3r ′ . (3.4)

Since (3.4) gives that c2 = 0 for any c ∈ C, we obtain that c(cx) = c2x = 0 and the
zero-commutativity in R yields that (cx)c = 0. Thus, by using (3.3), we find that xc = 0
for all x ∈ R, and also zero-commutativity of R implies that cx = 0, that is,

RC = CR = {0}. (3.5)

Equation (3.5) shows that the nilpotent elements of R annihilate R on both sides and
hence, in particular, C2 = {0} and C ⊆ Z . If c,d∈ C, then (c−d)2 = 0. This gives that
c−d ∈ C and C is a sub-group of the additive group (R,+). Now the application of
Lemma 3.2 yields the required result.

Lemma 3.6. Let R be a near-ring satisfying the property (P2). If the idempotents of
R are multiplicatively central, then B is a sub-near-ring with (B,+) abelian.

Proof. Let a,b ∈ B. Then there exist integers m′ =m(a) > 1 and n′ = n(b) > 1
such that am′ = a and bn′ = b. If

s = (m′ −1)n′ −(m′ −2)= (n′ −1)m′ −(n′ −2)> 1, (3.6)

then it is clear that as = a and bs = b. Note also that e1 = as−1 and e2 = bs−1 are
central idempotents in R with e1a= a and e2b = b. Also, in view of (P2), we find that

ab = (e1a
)(
e2b

)= (e1e2
)
(ab)= (e1e2

)p(e1e2abe1e2
)r (e1e2

)q
(3.7)
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for some integers p = p(e1e2,ab) ≥ 0, q = q(e1e2,ab) ≥ 0, and r = r(e1e2,ab) > 1.
This yields that

ab = e1e2(ab)r e1e2, (3.8)

so, ab ∈ B. Moreover, since R/C has the xn = x property, we have an integer k > 1
such that

(a−b)k = a−b+c, (3.9)

where a,b ∈ B and c ∈ C. Now e1 and e2 are central idempotents in R and, in view
of Lemma 3.4, there exists an idempotent e ∈ R such that ee1 = e1 and ee2 = e2. This
implies that ea= a and eb = b. Since (3.5) is still valid in the present situation,multiply
(3.9) by e to get (a−b)k = a−b, and hence a−b ∈ B. Also, eR is a periodic near-ring
with multiplicative identity element in which nilpotent elements are multiplicatively
central. Thus by Lemma 3.3, (eR,+) is abelian. Therefore, ea+eb = eb+ea, that is,
a+b = b+a, and hence (B,+) is abelian.

Proof of Theorem 3.1. Let x ∈ R. Then in view of (3.4), if x2 = xk, k= p′ +q′ +
3r ′ ≥ 3, then clearly xj = xj+s(k−2) for all j ≥ 2 and s ≥ 1 it follows at once that
(xk−1)k−1 = xk−1; so xk−1 ∈ B; it also follows that (x−xk−1)2 = 0 and x−xk−1 ∈ C .
Hence, we can write x = x −xk−1 +xk−1 and see that R = C + B. Now, in view of
Lemmas 3.5 and 3.6, it remains only to show that each element of R has the unique
representation in the form c+b, where c ∈ C , b ∈ B. Suppose that c+a= d+b, where
c,d ∈ C and a,b ∈ B. Then −d+ c = b−a ∈ C ∩B = {0}. This gives that a = b and
c = d.

Remark 3.7. In view of Example E-14 [11, page 340], it is clear that the centrality
of idempotents in the hypotheses of Theorem 3.1 is not superfluous.

Remark 3.8. If a near-ring R satisfies (P3), then it can be easily verified that R need
not be zero-commutative. However, a zero-symmetric near-ring satisfying (P3) is nec-
essarily zero-commutative. Hence, for a zero-symmetric near-ring satisfying (P3), Lem-
mas 3.5 and 3.6 may be proved easily in the same fashion. By using similar arguments
used to prove Theorem 3.1, with necessary variations, we can prove the following
result. We omit the details of the proof to avoid repetition.

Theorem 3.9. Let R be a zero-symmetric near-ring satisfying (P3). If the idempo-
tent elements of R are multiplicatively central, then C is a sub-near-ring with trivial
multiplication, B is a sub-near-ring with (B,+) abelian and R = C+̇B.
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