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THE COXETER GROUP Dn
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Abstract. We show that the Coxeter group Dn is the split extension of n−1 copies of Z2
by Sn for a given action of Sn described in the paper. We also find the centre of Dn and
some of its other important subgroups.

Keywords and phrases. Coxeter group, split extension.

2000 Mathematics Subject Classification. Primary 20F05.

1. Introduction. The Coxeter group Dn [5] has the presentation

Dn =
〈
x1,x2, . . . ,xn | x2

i = e,1≤ i≤n;
(
xixi+1

)3 = e,2≤ i≤n−1;
(
xixj

)2 = e,|i−j|≠ 1 and (i,j)≠ (1,3);
(
x1x2

)2 = (x1x3
)3 = e

〉
.

(1.1)

and the graph given in Figure 1.1.

1

2 3 4 n−2 n−1 n

.. .

Figure 1.1.

In [1], we have shown that D4 is solvable with derived length 4 and that its order
is 192. In this paper, we explain the algebraic structure of Dn and find its centre. We
also find the derived series; and the growth series of Dn for 4≤n≤ 8.

2. The structure of Dn. In [4], we have shown that the Coxeter group Bn whose
graph is given in Figure 2.1

1 2 3 4 n−1 n

.. .

Figure 2.1.

is the wreath product of Z2 by Sn, that is, Bn is the split extension of Zn
2 by Sn. Let Zn

2

have the presentation

H = Zn
2 =

〈
a1,a2, . . . ,an | a2

i = e,1≤ i≤n;
(
aiaj

)2 = e,1≤ i < j ≤n
〉
. (2.1)
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Let K be the even subgroup of H, that is, the subgroup consisting of even words in
H. It is easy to find the following presentation for K:

K = 〈b2,b3, . . . ,bn | b2
i = e,2≤ i≤n;

(
bibj

)2 = e,2≤ i < j ≤n
〉
, (2.2)

where bi = a1ai, 2≤ i≤n. Thus K is Zn−1
2 . In the extension Bn � Zn

2 �Sn, the action of
Sn on Zn

2 is a natural one that can be explained as follows. Let Sn have the presentation

Sn =
〈
x1,x2, . . . ,xn−1 | x2

i = e,1≤ i≤n−1; (xixi+1
)3 = e,1≤ i≤n−2;

(
xixj

)2 = e,1≤ i < j−1≤n−2〉,
(2.3)

where xi is the transposition (ii+1). The action of Sn on H is given by

(
a1,a2, . . . ,ai−1,ai,ai+1, . . . ,an

)xi = (a1,a2, . . . ,ai−1,ai+1,ai, . . . ,an
)
. (2.4)

Using this action we compute the action of Sn on K as follows:
(
b2,b3, . . . ,bn

)x1 = (a1a2,a1a3, . . . ,a1an
)x1

= (a2a1,a2a3, . . . ,a2an
)

= (b−12 ,b−12 b3, . . . ,b−12 bn
)
,

(
b2,b3, . . . ,bi,bi+1, . . . ,bn

)xi = (a1a2, . . . ,a1ai,a1ai+1, . . . ,a1an
)xi

= (a1a2, . . . ,a1ai+1,a1ai, . . . ,a1an
)

= (b2, . . . ,bi+1,bi, . . . ,bn
)
, 2≤ i≤n−1.

(2.5)

We use this action to construct a split extension E of K = Zn−1
2 by Sn. A presentation

for this extension is given by the method in [2], E = 〈generators of K, generators of
Sn | relations of K, relations of Sn, the action of Sn on K〉.
We change the action of Sn on K to the following relations:

bx1
2 = b−12 , (2.6)

bx1
i = b−12 bi, 3≤ i≤n, (2.7)

bxi
i = bi+1, 2≤ i≤n−1, (2.8)

bxi
i+1 = bi, 2≤ i≤n−1, (2.9)

bxi
j = bj, 2≤ j ≤n, 2≤ i≤n−1, j ≠ i, j ≠ i+1. (2.10)

We will use Tietze transformations to show that E is isomorphic toDn. But before that
we observe the following. The relation (2.8) implies that bi = bx2x3···xi−1

2 , 3 ≤ i ≤ n.
Let ui = x2x3 ···xi.

Lemma 2.1. The following identities hold in the group Sn−1:
(i) ukxi = xi+1uk, if 2≤ i≤ k,
(ii) ukxi =uk−1, if i= k,
(iii) ukxi =uk+1, if i= k+1,
(iv) ukxi = xiuk, if i > k+1,
(v) ukui = (x3x4 ···xi+1)uk, if 2≤ i < k,
(vi) ukui = (x3x4 ···xi)uk−1, if i≥ k.
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Proof. We will make use of the relations of Sn−1.
(i)

ukxi =
(
x2x3 ···xixi+1 ···xk

)
xi

= x2x3 ···xixi+1xi ···xk

= x2x3 ···xi+1xixi+1 ···xk

= xi+1x2x3 ···xixk = xi+1uk.

(2.11)

(ii), (iii), and (iv) are clear, while (v) and (vi) are applications of (i) to (iv).

We reduce relation (2.6) to (2.10) as follows. Relation (2.6) easily becomes

(
x1b2

)2 = e. (2.12)

Using Lemma 2.1, (2.7) becomes

(
b2x1x2

)3 = e. (2.13)

Using bi = bx2x3···xi−1
2 , (2.8) becomes redundant. Relation (2.9), using Lemma 2.1, be-

comes redundant. Using Lemma 2.1, (2.10) becomes

(
xib2

)2 = e, 3≤ i≤n. (2.14)

The relation b2
i = e= (bibj)2 become redundant for i≥ 3. Let c = x1b2. Then (2.12) be-

comes c2 = e. Relation (2.13) becomes (cx2)3 = e. Relation (2.14) becomes
(cxi)2 = e for i≥ 3. The relation b2

2 = e becomes (cx1)2 = e. Therefore a presentation
for E is

E = 〈x1,x2, . . . ,xn−1,c | x2
i = e,1≤ i≤n−1; c2 = e;

(
xixj

)2 = e,1≤ i < j−1≤n−2; (xixi+1
)3 = e,1≤ i≤n−2;

(
cx2

)3 = e;
(
cxi

)2 = e,1≤ i≤n−1 and i≠ 2
〉
.

(2.15)

Consequently, we have proved the following theorem.

Theorem 2.2. The group Dn is the split extension of n−1 copies of Z2 by Sn.

Remark 2.3. Let us describe the relation between the Coxeter groups Bn and Dn.
It is easy to show that Dn is the subgroup of Bn consisting of all elements of even
length in Bn. Thus Dn is a subgroup of Bn of index 2. On the other hand, let Sn be
the symmetric group of degree n generated by yi, 1≤ i≤n−1. We consider the map
θ : Dn → Sn defined by θ(x1) = y2, θ(x2) = y2, and θ(xi) = yi−1, 3 ≤ i ≤ n. Using
the Reidemeister-Schreier process, it is possible to show that θ−1(Sn−1)� Bn−1. Hence
Bn−1 is a subgroup of Dn of index n. We observe the graph given in Figure 2.2.
The orders of Bn and Dn are |Bn| = 2nn! and |Dn| = 2n−1n!, respectively. It is also

easy to see that B′n �D′
n.
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Figure 2.2.

3. The derived series of Dn. In [1], we showed that D4 is solvable of derived
length 4. For n > 4 we use the Reidemeister-Shreier process to find the following
presentation for D′

n:

D′
n =

〈
b2,b3, . . . ,bn | b2

2 = b3
3 = b2

i = e, 4≤ i≤n;
(
bibi+1

)3 = e, 2≤ i≤n−1; (bibj
)2 = e, 2≤ i < j−1≤n−1〉.

(3.1)

The groupD′
n/D′′

n is trivial. HenceD′
n is a complete group. We thus have the following

theorem.

Theorem 3.1. Dn is solvable of derived length 4 if n = 4. If n > 4, then Dn is not
solvable.

4. The centre of Dn. We use the structure of Dn explained in Section 2 to prove
the following theorem.

Theorem 4.1. The centre of Dn is Z2 if n is even and trivial if n is odd.

Proof. In Section 2, we showed that Dn is the split extension of Zn−1
2 by Sn. This

means the existence of an epimorphism θ : Dn → Sn, where kerθ = Zn−1
2 . It follows

that θ(Z(Dn)) ⊆ Z(θ(Dn)) = Z(Sn) = {e}. Hence Z(Dn) ⊆ kerθ = zn−1
2 . We use the

previous notation where Sn = 〈x1,x2, . . . ,xn−1〉 and Zn−1
2 = 〈b2,b3, . . . ,bn〉 and the

previous action. We let w ∈ Z(Dn)⇒ w ∈ Zn−1
2 and wxi = w for 1 ≤ i ≤ n−1. Also

w = bε2
2 bε3

3 ···bεn
n , where εi = 0 or 1 since b2

i = e. Using the action of Sn on Zn−1
2 ,

we get

(
bε2
2 bε3

3 ···bεi
i bεi+1

i+1 ···bεn
n

)xi = bε2
2 bε3

3 ···bεi
i bεi+1

i+1 ···bεn
n . (4.1)
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Letting 2≤ i≤n−1, we get

bε2
2 bε3

3 ···bεi
i+1b

εi+1
i ···bεn

n = bε2
2 bε3

3 ···bεi
i bεi+1

i+1 ···bεn
n , (4.2)

and so bεi
i+1b

εi+1
i = bεi

i bεi+1
i+1 . This implies εi = εi+1 and so ε2 = ε3 = ··· = εn. Hence

w = b2b3 ···bn orw = b0
2b

0
3 ···b0

n = e. Now, we consider the action of x1 onw in the
following two cases:
(a) If n is even, we get (b2b3 ···bn)x1 = bn−2

2 b2b3 ···bn = b2b3 ···bn since b2
2 = e.

Hence b2b3 ···bn is in the centre of Dn. Since (b2b3 ···bn)2 = e, we get Z(Dn)= Z2.
(b) If n is odd, (b2b3 ···bn)x1 = b3b4 ···bn and b2b3 ···bn does not commute with

x1. Thus w is b0
2b

0
3 ···b0

n = e and Z(Dn)= {e}.

5. The growth series. The growth series, in the sense of Milnor and Gromov, of Dn

for 4≤n≤ 8 were computed as follows [3]:

γ
(
D4
)= (1+t)4

(
1+t2

)2(
1−t+t2

)(
1+t+t2

)
, (5.1)

γ
(
D5
)= (1+t)4

(
1+t2

)2(
1+t4

)(
1−t+t2

)(
1+t+t2

)(
1+t+t2+t3+t4

)
, (5.2)

γ
(
D6
)= (1+t)6

(
1+t2

)2(
1+t4

)(
1−t+t2

)2(
1+t+t2

)2

×(1−t+t2−t3+t4
)(
1+t+t2+t3+t4

)
,

(5.3)

γ
(
D7
)= (1+t)6

(
1+t2

)3(
1+t4

)(
1−t+t2

)2(
1+t+t2

)2(
1−t2+t4

)

×(1−t+t2−t3+t4
)(
1+t+t2+t3+t4

)(
1+t+t2+t3+t4+t5+t6

)
,

(5.4)

γ
(
D8
)= (1+t)8

(
1+t2

)4(
1+t4

)2(
1−t+t2

)2(
1+t+t2

)2

×(1−t2+t4
)(
1−t+t2−t3+t4

)(
1+t+t2+t3+t4

)

×(1−t+t2−t3+t4−t5+t6
)(
1+t+t2+t3+t4+t5+t6

)
.

(5.5)

Wemake two observations about these growth polynomials. First, each growth series
is a product of cyclotomic polynomials. Second, the value of the series at 1 is the order
of the corresponding group and the degree of the growth series equals the length of
the element of maximal length.
We have not yet succeeded in finding the growth series of Dn for general n.
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